首页> 美国卫生研究院文献>other >Statistical analysis of bitcoin during explosive behavior periods
【2h】

Statistical analysis of bitcoin during explosive behavior periods

机译:爆炸行为期间的比特币统计分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper develops the ability of the normal inverse Gaussian distribution (NIG) to fit the returns of bitcoin (BTC). As the first cryptocurrency created, the behavior of this new asset is characterized by great volatility. The lack of a proper definition or classification under existing theory exacerbates this property in such a way that explosive periods followed by a rapid decline have been observed along the series, meaning bubble episodes. By detecting the periods in which a bubble rises and collapses, it is possible to study the statistical properties of such segments. In particular, adjusting a theoretical distribution may help to determine better strategies to hedge against these episodes. The NIG is an appropriate candidate not only because of its heavy-tailed property but also because it has been proven to be closed under convolution, a characteristic that can be implemented to measure multivariate value at risk. Using data on the price of BTC with respect to seven of the main global currencies, the NIG was able to fit every time segment despite the bubble behavior. In the out-of-sample tests, the NIG was proven to have an adjustment similar to that of a generalized hyperbolic (GH) distribution. This result could serve as a starting point for future studies regarding the statistical properties of cryptocurrencies as well as their multivariate distributions.
机译:本文开发了正态逆高斯分布(NIG)拟合比特币收益(BTC)的能力。作为创建的第一个加密货币,此新资产的行为具有极大的波动性。在现有理论下缺乏适当的定义或分类会加剧这种特性,以致在整个系列中都观察到爆发期,随后迅速下降,这意味着出现了气泡。通过检测气泡上升和破裂的时间段,可以研究此类段的统计特性。特别是,调整理论分布可能有助于确定更好的策略来对冲这些事件。 NIG是合适的候选者,不仅因为其重尾特性,而且还因为它已被证明在卷积下是封闭的,该特性可以用来测量处于风险中的多元值。使用有关七种主要全球货币的BTC价格数据,NIG能够在每个时间段进行拟合,尽管存在泡沫行为。在样本外测试中,NIG被证明具有与广义双曲线(GH)分布相似的调整。该结果可以作为有关加密货币及其多元分布的统计特性的未来研究的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号