首页> 美国卫生研究院文献>other >Optimal parameter identification of synthetic gene networks using harmony search algorithm
【2h】

Optimal parameter identification of synthetic gene networks using harmony search algorithm

机译:基于和声搜索算法的合成基因网络最优参数识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational modeling of engineered gene circuits is an important while challenged task in systems biology. In order to describe and predict the response behaviors of genetic circuits using reliable model parameters, this paper applies an optimal experimental design(OED) method to obtain input signals. In order to obtain informative observations, this study focuses on maximizing Fisher information matrix(FIM)-based optimal criteria and to provide optimal inputs. Furthermore, this paper designs a two-stage optimization with the modified E-optimal criteria and applies harmony search(HS)-based OED algorithm to minimize estimation errors. The proposed optimal identification methodology involves estimation errors and the sample size to pursue a trade-off between estimation accuracy and measurement cost in modeling gene networks. The designed cost function takes two major factors into account, in which experimental costs are proportional to the number of time points. Experiments select two types of synthetic genetic networks to validate the effectiveness of the proposed HS-OED approach. Identification outcomes and analysis indicate the proposed HS-OED method outperforms two candidate OED approaches, with reduced computational effort.
机译:工程基因电路的计算建模是系统生物学中一项重要而又充满挑战的任务。为了使用可靠的模型参数描述和预测遗传电路的响应行为,本文采用了一种最优的实验设计(OED)方法来获取输入信号。为了获得有益的观察,本研究着重于最大化基于Fisher信息矩阵(FIM)的最佳标准并提供最佳输入。此外,本文设计了一种改进的E最优准则的两阶段优化算法,并应用了基于和声搜索(HS)的OED算法来最小化估计误差。所提出的最佳识别方法涉及估计误差和样本量,以在对基因网络建模时估计准确性和测量成本之间进行权衡。设计成本函数考虑了两个主要因素,其中实验成本与时间点的数量成正比。实验选择了两种类型的合成遗传网络来验证所提出的HS-OED方法的有效性。鉴定结果和分析表明,所提出的HS-OED方法优于两种候选OED方法,并且减少了计算量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号