首页> 美国卫生研究院文献>other >Computational Network Modeling of Intranidal Hemodynamic Compartmentalization in a Theoretical Three-Dimensional Brain Arteriovenous Malformation
【2h】

Computational Network Modeling of Intranidal Hemodynamic Compartmentalization in a Theoretical Three-Dimensional Brain Arteriovenous Malformation

机译:理论性三维脑动静脉畸形的内部血流动力学区划的计算网络建模。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are currently no in vivo techniques to accurately study dynamic equilibrium of blood flow within separate regions (compartments) of a large brain arteriovenous malformation (AVM) nidus. A greater understanding of this AVM compartmentalization, even if theoretical, would be useful for optimal planning of endovascular and multimodal AVM therapies. We aimed to develop a biomathematical AVM model for theoretical investigations of intranidal regions of increased mean intravascular pressure (Pmean) and flow representing hemodynamic compartments, upon simulated AVM superselective angiography (SSA). We constructed an AVM model as a theoretical electrical circuit containing four arterial feeders (AF1–AF4) and a three-dimensional nidus of 97 interconnected plexiform and fistulous components. We simulated SSA by increases in Pmean in each AF (with and without occlusion of all other AFs), and then used network analysis to establish resulting increases in Pmean and flow within each nidus vessel. We analyzed shifts in hemodynamic compartments consequent to increasing AF injection pressures. SSA simulated by increases of 10 mm Hg in AF1, AF2, AF3, or AF4 resulted in dissipation of Pmean over 38, 66, 76, or 20% of the nidus, respectively, rising slightly with simultaneous occlusion of other AFs. We qualitatively analyzed shifting intranidal compartments consequent to varying injection pressures by mapping the hemodynamic changes onto the nidus network. Differences in extent of nidus filling upon SSA injections provide theoretical evidence that hemodynamic and angioarchitectural features help establish AVM nidus compartmentalization. This model based on a theoretical AVM will serve as a useful computational tool for further investigations of AVM embolotherapy strategies.
机译:当前尚无体内技术来准确研究大型脑动静脉畸形(AVM)病灶的单独区域(隔室)内血流的动态平衡。即使是理论上的了解,对AVM分区的深入了解对于血管内和多模式AVM疗法的最佳计划也将是有用的。我们旨在建立一个生物数学AVM模型,用于对模拟平均AVM超选择性血管造影(SSA)的平均血管内压(Pmean)和代表血流动力学区室的血流增加的节内区域进行理论研究。我们构建了一个AVM模型,作为一个理论电路,其中包含四个动脉支线(AF1-AF4)和一个由97个相互连接的丛状和瘘状成分组成的三维nidus。我们通过每个AF中Pmean的增加(有或没有其他所有AF闭塞)来模拟SSA,然后使用网络分析来确定导致每个nidus血管内Pmean和流量增加的结果。我们分析了由于AF注射压力增加而导致的血液动力学隔室的变化。通过在AF1,AF2,AF3或AF4中增加10 mm Hg来模拟的SSA导致Pmean的散发分别超过38%,66%,76%或20%的病灶,在同时阻塞其他AF的情况下略有上升。我们通过将血流动力学变化映射到nidus网络上,定性分析了由于改变注射压力而导致的移位的内膜腔室。注射SSA后nidus充盈程度的差异提供了理论证据,证明血流动力学和血管结构特征有助于建立AVM nidus分隔。这种基于理论AVM的模型将用作进一步研究AVM栓塞治疗策略的有用的计算工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号