首页> 美国卫生研究院文献>other >Existence of multiple scales in uncertainty of numerical weather prediction
【2h】

Existence of multiple scales in uncertainty of numerical weather prediction

机译:数值天气预报不确定性中多个尺度的存在

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Numerical weather prediction provides essential information of societal influence. Advances in the initial condition estimation have led to the improvement of the prediction skill. The process to produce the better initial condition (analysis) with the combination of short-range forecast and observation over the globe requires information about uncertainty of the forecast results to decide how much observation is reflected to the analysis and how far the observation information should be propagated. Forecast ensemble represents the error of the short-range forecast at the instance. The influence of observation propagating along with forecast ensemble correlation needs to be restricted by localized correlation function because of less reliability of sample correlation. So far, solitary radius of influence is usually used since there has not been an understanding about the realism of multiple scales in the forecast uncertainty. In this study, it is explicitly shown that multiple scales exist in short-range forecast error and any single-scale localization approach could not resolve this situation. A combination of Gaussian correlation functions of various scales is designed, which more weighs observation itself near the data point and makes ensemble perturbation, far from the observation position, more participate in decision of the analysis. Its outstanding performance supports the existence of multi-scale correlation in forecast uncertainty.
机译:数值天气预报提供了社会影响力的基本信息。初始条件估计的进步已导致预测技能的提高。结合短期预测和全球观测产生更好的初始条件(分析)的过程,需要有关预测结果不确定性的信息,以决定将多少观测反映到分析中以及将观测信息反映到多远传播。预测集合表示实例处的短期预测的误差。由于样本相关的可靠性较低,因此观测传播与预测集合相关的影响需要受局部相关函数限制。到目前为止,通常都使用单独的影响半径,因为尚未对预测不确定性中的多尺度真实性有所了解。在这项研究中,明确表明短程预测误差中存在多个尺度,任何单一尺度的定位方法都无法解决这种情况。设计了各种尺度的高斯相关函数的组合,这样可以更加权衡数据点附近的观测本身,并使整体扰动远离观测位置,从而更多地参与分析决策。其出色的性能支持了预测不确定性中多尺度相关性的存在。

著录项

  • 期刊名称 other
  • 作者

    Hyo-Jong Song;

  • 作者单位
  • 年(卷),期 -1(9),-1
  • 年度 -1
  • 页码 15672
  • 总页数 10
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号