首页> 美国卫生研究院文献>Nanoscale Research Letters >Microscopic modeling of charge transport in sensing proteins
【2h】

Microscopic modeling of charge transport in sensing proteins

机译:传感蛋白中电荷迁移的微观模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensing proteins (receptors) are nanostructures that exhibit very complex behaviors (ions pumping, conformational change, reaction catalysis, etc). They are constituted by a specific sequence of amino acids within a codified spatial organization. The functioning of these macromolecules is intrinsically connected with their spatial structure, which modifications are normally associated with their biological function. With the advance of nanotechnology, the investigation of the electrical properties of receptors has emerged as a demanding issue. Beside the fundamental interest, the possibility to exploit the electrical properties for the development of bioelectronic devices of new generations has attracted major interest. From the experimental side, we investigate three complementary kinds of measurements: (1) current-voltage (I-V) measurements in nanometric layers sandwiched between macroscopic contacts, (2) I-V measurements within an AFM environment in nanometric monolayers deposited on a conducting substrate, and (3) electrochemical impedance spectroscopy measurements on appropriate monolayers of self-assembled samples. From the theoretical side, a microscopic interpretation of these experiments is still a challenging issue. This paper reviews recent theoretical results carried out within the European project, Bioelectronic Olfactory Neuron Device, which provides a first quantitative interpretation of charge transport experiments exploiting static and dynamic electrical properties of several receptors. To this purpose, we have developed an impedance network protein analogue (INPA) which considers the interaction between neighboring amino acids within a given radius as responsible of charge transfer throughout the protein. The conformational change, due to the sensing action produced by the capture of the ligand (photon, odour), induces a modification of the spatial structure and, thus, of the electrical properties of the receptor. By a scaling procedure, the electrical change of the receptor when passing from the native to the active state is used to interpret the macroscopic measurement obtained within different methods. The developed INPA model is found to be very promising for a better understanding of the role of receptor topology in the mechanism responsible of charge transfer. Present results point favorably to the development of a new generation of nano-biosensors within the lab-on-chip strategy.
机译:传感蛋白(受体)是表现出非常复杂行为(离子泵送,构象变化,反应催化等)的纳米结构。它们由编码的空间组织内的特定氨基酸序列构成。这些大分子的功能本质上与它们的空间结构有关,这种修饰通常与其生物学功能有关。随着纳米技术的进步,对受体电学性质的研究已成为一个亟待解决的问题。除了基本兴趣之外,利用电学性质开发新一代生物电子器件的可能性引起了人们的极大兴趣。从实验方面,我们研究了三种互补的测量方法:(1)夹在宏观触点之间的纳米层中的电流-电压(IV)测量;(2)在AFM环境中沉积在导电衬底上的纳米单层中的IV测量;以及(3)在自组装样品的适当单层上进行电化学阻抗谱测量。从理论上讲,这些实验的微观解释仍然是一个具有挑战性的问题。本文回顾了在欧洲项目“生物电子嗅觉神经元设备”中进行的最新理论结果,该研究结果对利用几种受体的静态和动态电特性的电荷传输实验进行了首次定量解释。为此,我们开发了一种阻抗网络蛋白类似物(INPA),该蛋白将给定半径内相邻氨基酸之间的相互作用视为整个蛋白中电荷转移的原因。由于捕获配体(光子,气味)而产生的传感作用,构象变化引起空间结构的改变,从而引起受体的电学性质的改变。通过缩放过程,当从自然状态转变为活动状态时,受体的电变化用于解释在不同方法中获得的宏观测量结果。发现开发的INPA模型对于更好地理解受体拓扑在负责电荷转移的机制中的作用非常有前途。当前的结果有利于在芯片实验室策略中开发新一代的纳米生物传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号