首页> 美国卫生研究院文献>Ecology and Evolution >Analyzing large-scale conservation interventions with Bayesian hierarchical models: a case study of supplementing threatened Pacific salmon
【2h】

Analyzing large-scale conservation interventions with Bayesian hierarchical models: a case study of supplementing threatened Pacific salmon

机译:用贝叶斯等级模型分析大规模的保护措施:以补充濒临灭绝的太平洋鲑鱼为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Myriad human activities increasingly threaten the existence of many species. A variety of conservation interventions such as habitat restoration, protected areas, and captive breeding have been used to prevent extinctions. Evaluating the effectiveness of these interventions requires appropriate statistical methods, given the quantity and quality of available data. Historically, analysis of variance has been used with some form of predetermined before-after control-impact design to estimate the effects of large-scale experiments or conservation interventions. However, ad hoc retrospective study designs or the presence of random effects at multiple scales may preclude the use of these tools. We evaluated the effects of a large-scale supplementation program on the density of adult Chinook salmon Oncorhynchus tshawytscha from the Snake River basin in the northwestern United States currently listed under the U.S. Endangered Species Act. We analyzed 43 years of data from 22 populations, accounting for random effects across time and space using a form of Bayesian hierarchical time-series model common in analyses of financial markets. We found that varying degrees of supplementation over a period of 25 years increased the density of natural-origin adults, on average, by 0–8% relative to nonsupplementation years. Thirty-nine of the 43 year effects were at least two times larger in magnitude than the mean supplementation effect, suggesting common environmental variables play a more important role in driving interannual variability in adult density. Additional residual variation in density varied considerably across the region, but there was no systematic difference between supplemented and reference populations. Our results demonstrate the power of hierarchical Bayesian models to detect the diffuse effects of management interventions and to quantitatively describe the variability of intervention success. Nevertheless, our study could not address whether ecological factors (e.g., competition) were more important than genetic considerations (e.g., inbreeding depression) in determining the response to supplementation.
机译:无数的人类活动日益威胁着许多物种的生存。各种各样的保护措施,例如栖息地恢复,保护区和圈养繁殖已被用来防止灭绝。考虑到可用数据的数量和质量,评估这些干预措施的有效性需要适当的统计方法。从历史上看,方差分析已与某种形式的预先确定的前后控制影响设计一起使用,以估算大规模实验或保护性干预措施的效果。但是,临时的回顾性研究设计或多种规模的随机效应的存在可能会阻止使用这些工具。我们评估了一项大规模补充计划对目前受美国《濒危物种法》列出的美国西北部Snake河盆地成年奇努克鲑Oncorhynchus tshawytscha的密度的影响。我们分析了来自22个人群的43年数据,使用了在金融市场分析中常见的贝叶斯分层时间序列模型来解释跨时空的随机影响。我们发现,在25年的时间里,不同程度的补充相对于未补充的年平均增加了自然起源的成年人的密度,为0–8%。在43年的影响中,有39个的影响程度至少是平均补充作用的两倍,这表明常见的环境变量在驱动成年人密度的年际变化中起着更重要的作用。在整个区域,密度的其他残留变化差异很大,但补充种群和参考种群之间没有系统性差异。我们的结果证明了分层贝叶斯模型能够检测管​​理干预措施的分散效应并定量描述干预措施成功的可变性。然而,我们的研究无法确定在确定对补充的反应时,生态因素(例如竞争)是否比遗传因素(例如近亲繁殖抑郁)更重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号