首页> 美国卫生研究院文献>Journal of Mathematical Neuroscience >Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations
【2h】

Finite-Size Effects on Traveling Wave Solutions to Neural Field Equations

机译:神经场方程行波解的有限大小影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural field equations are used to describe the spatio-temporal evolution of the activity in a network of synaptically coupled populations of neurons in the continuum limit. Their heuristic derivation involves two approximation steps. Under the assumption that each population in the network is large, the activity is described in terms of a population average. The discrete network is then approximated by a continuum. In this article we make the two approximation steps explicit. Extending a model by Bressloff and Newby, we describe the evolution of the activity in a discrete network of finite populations by a Markov chain. In order to determine finite-size effects—deviations from the mean-field limit due to the finite size of the populations in the network—we analyze the fluctuations of this Markov chain and set up an approximating system of diffusion processes. We show that a well-posed stochastic neural field equation with a noise term accounting for finite-size effects on traveling wave solutions is obtained as the strong continuum limit.
机译:神经场方程用于描述连续区域极限内神经元的突触耦合群体网络中活动的时空演化。他们的启发式推导涉及两个近似步骤。假设网络中的每个人口都很大,则以人口平均数来描述活动。然后用一个连续体来近似离散网络。在本文中,我们将两个近似步骤明确化。通过扩展Bressloff和Newby的模型,我们描述了由马尔可夫链在有限人口离散网络中活动的演变。为了确定有限大小的效应(由于网络中总体数量有限而导致的平均场极限偏差),我们分析了此马尔可夫链的波动并建立了扩散过程的近似系统。我们表明,获得了一个具有适度条件的随机神经场方程,该噪声项考虑了对行波解的有限大小影响,并将其作为强连续极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号