首页> 美国卫生研究院文献>Nucleic Acids Research >A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data
【2h】

A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data

机译:一种基于深度增强的方法可从高通量CLIP-seq数据中捕获RNA结合蛋白的序列结合偏好

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false negative issue. Here, we develop a deep boosting based machine learning approach, called DeBooster, to accurately model the binding sequence preferences and identify the corresponding binding targets of RBPs from CLIP-seq data. Comprehensive validation tests have shown that DeBooster can outperform other state-of-the-art approaches in RBP target prediction. In addition, we have demonstrated that DeBooster may provide new insights into understanding the regulatory functions of RBPs, including the binding effects of the RNA helicase MOV10 on mRNA degradation, the potentially different ADAR1 binding behaviors related to its editing activity, as well as the antagonizing effect of RBP binding on miRNA repression. Moreover, DeBooster may provide an effective index to investigate the effect of pathogenic mutations in RBP binding sites, especially those related to splicing events. We expect that DeBooster will be widely applied to analyze large-scale CLIP-seq experimental data and can provide a practically useful tool for novel biological discoveries in understanding the regulatory mechanisms of RBPs. The source code of DeBooster can be downloaded from .
机译:表征RNA结合蛋白(RBP)的结合行为对于理解其在基因表达调控中的功能至关重要。但是,当前用于识别RBP目标的高通量实验方法(例如CLIP-seq和RNAcompete)通常会遇到假阴性问题。在这里,我们开发了一种基于深度增强的机器学习方法,称为DeBooster,以准确建模绑定序列首选项并从CLIP-seq数据中识别RBP的相应绑定目标。全面的验证测试表明,DeBooster可以在RBP目标预测中胜过其他最新方法。此外,我们已证明DeBooster可能为了解RBP的调节功能提供新见解,包括RNA解旋酶MOV10对mRNA降解的结合作用,与其编辑活性有关的潜在ADAR1结合行为以及拮抗作用。 RBP结合对miRNA抑制的影响。此外,DeBooster可能为研究致病性突变在RBP结合位点,尤其是与剪接事件相关的位点的作用,提供有效的指标。我们希望DeBooster将被广泛地用于分析大规模CLIP-seq实验数据,并可以为了解RBP调控机制的新型生物学发现提供实用的工具。可以从下载DeBooster的源代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号