首页> 美国卫生研究院文献>Scientific Reports >Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data
【2h】

Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data

机译:深度认知成像系统可以根据气候数据估算大陆范围的火灾发生率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unplanned fire is a major control on the nature of terrestrial ecosystems and causes substantial losses of life and property. Given the substantial influence of climatic conditions on fire incidence, climate change is expected to substantially change fire regimes in many parts of the world. We wished to determine whether it was possible to develop a deep neural network process for accurately estimating continental fire incidence from publicly available climate data. We show that deep recurrent Elman neural network was the best performed out of ten artificial neural networks (ANN) based cognitive imaging systems for determining the relationship between fire incidence and climate. In a decennium data experiment using this ANN we show that it is possible to develop highly accurate estimations of fire incidence from monthly climatic data surfaces. Our estimations for the continent of Australia had over 90% global accuracy and a very low level of false negatives. The technique is thus appropriate for use in estimating the spatial consequences of climate scenarios on the monthly incidence of wildfire at the landscape scale.
机译:计划外火灾是对陆地生态系统性质的主要控制,会造成重大生命和财产损失。考虑到气候条件对火灾发生的重大影响,预计气候变化将大大改变世界许多地区的火灾状况。我们希望确定是否有可能开发出深度神经网络程序,以便根据可公开获得的气候数据准确估算大陆性火灾的发生率。我们表明,在确定火灾发生与气候之间的关系的十个基于人工神经网络(ANN)的认知成像系统中,深度递归Elman神经网络表现最佳。在使用该人工神经网络进行的十年数据实验中,我们表明可以从每月的气候数据表面开发高度准确的火灾发生率估算。我们对澳大利亚大陆的估计具有90%以上的全球准确性,而且误报率非常低。因此,该技术适用于估计气候情景对景观规模月度野火发生的空间影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号