首页> 美国卫生研究院文献>Scientific Reports >In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces
【2h】

In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces

机译:电极-电解液界面上镁电沉积的原位多峰成像和光谱学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report the study of Mg cathodic electrochemical deposition on Ti and Au electrode using a multimodal approach by examining the sample area in-situ using liquid cell transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM) and X-ray absorption spectroscopy (XAS). Magnesium Aluminum Chloride Complex was synthesized and utilized as electrolyte, where non-reversible features during in situ charging-discharging cycles were observed. During charging, a uniform Mg film was deposited on the electrode, which is consistent with the intrinsic non-dendritic nature of Mg deposition in Mg ion batteries. The Mg thin film was not dissolvable during the following discharge process. We found that such Mg thin film is hexacoordinated Mg compounds by in-situ STXM and XAS. This study provides insights on the non-reversibility issue and failure mechanism of Mg ion batteries. Also, our method provides a novel generic method to understand the in situ battery chemistry without any further sample processing, which can preserve the original nature of battery materials or electrodeposited materials. This multimodal in situ imaging and spectroscopy provides many opportunities to attack complex problems that span orders of magnitude in length and time scale, which can be applied to a broad range of the energy storage systems.
机译:我们通过使用液体细胞透射电子显微镜(TEM),扫描透射X射线显微镜(STXM)和X射线吸收原位检查样品区域来报告使用多峰方法在Ti和Au电极上进行Mg阴极电化学沉积的研究光谱(XAS)。合成了氯化镁铝配合物并用作电解质,在原位充放电循环中观察到了不可逆的特征。在充电过程中,均匀的Mg膜沉积在电极上,这与Mg离子电池中Mg沉积的固有非树突性质一致。在随后的放电过程中,Mg薄膜不可溶。我们通过原位STXM和XAS发现这种Mg薄膜是六配位的Mg化合物。这项研究提供了有关镁离子电池不可逆性问题和失效机理的见解。同样,我们的方法提供了一种新颖的通用方法,无需任何进一步的样品处理即可了解原位电池化学,从而可以保留电池材料或电沉积材料的原始性质。这种多模式原位成像和光谱学为解决跨越长度和时间尺度几个数量级的复杂问题提供了许多机会,这些问题可以应用到广泛的能量存储系统中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号