首页> 美国卫生研究院文献>Scientific Reports >Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4
【2h】

Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

机译:动态代谢谱分析和转录分析揭示了藻类衣藻中盐度诱导的淀粉到脂质的生物合成。 JSC4

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to lipids in microalgae remains unclear, thus complicating the genetic engineering of algal strains. We here used “dynamic” metabolic profiling and essential transcription analysis of the oleaginous green alga Chlamydomonas sp. JSC4 for the first time to demonstrate the switching mechanisms from starch to lipid synthesis using salinity as a regulator, and identified the metabolic rate-limiting step for enhancing lipid accumulation (e.g., pyruvate-to-acetyl-CoA). These results, showing salinity-induced starch-to-lipid biosynthesis, will help increase our understanding of dynamic carbon partitioning in oleaginous microalgae. Moreover, we successfully determined the changes of several key lipid-synthesis-related genes (e.g., acetyl-CoA carboxylase, pyruvate decarboxylase, acetaldehyde dehydrogenase, acetyl-CoA synthetase and pyruvate ferredoxin oxidoreductase) and starch-degradation related genes (e.g., starch phosphorylases), which could provide a breakthrough in the marine microalgal production of biodiesel.
机译:使用微藻生产生物柴油将在满足未来全球能源需求方面发挥关键作用。了解微藻中的脂质代谢对于分离能够过量产生脂质的油质菌株很重要。据报道,减少淀粉的生物合成可以增强脂质的积累。然而,控制微藻中从淀粉到脂质的碳分配的代谢机制仍然不清楚,因此使藻株的基因工程复杂化。我们在这里使用了油绿绿藻衣藻的“动态”代谢谱分析和必要的转录分析。 JSC4首次展示了使用盐度作为调节剂从淀粉到脂质合成的转换机制,并确定了用于限制脂质积累的代谢速率限制步骤(例如,丙酮酸转化为乙酰辅酶A)。这些结果显示了盐度诱导的淀粉到脂质的生物合成,将有助于增加我们对含油微藻中动态碳分配的了解。此外,我们成功地确定了几个关键的脂质合成相关基因(例如,乙酰辅酶A羧化酶,丙酮酸脱羧酶,乙醛脱氢酶,乙酰辅酶A合成酶和丙酮酸铁氧还蛋白氧化还原酶)和淀粉降解相关基因(例如淀粉磷酸化酶)的变化),这可能会在海洋微藻生物柴油生产中取得突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号