首页> 美国卫生研究院文献>Scientific Reports >Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway
【2h】

Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway

机译:集成的深层视觉和语义吸引子神经网络可预测腹侧物体处理路径上的fMRI模式信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recognising an object involves rapid visual processing and activation of semantic knowledge about the object, but how visual processing activates and interacts with semantic representations remains unclear. Cognitive neuroscience research has shown that while visual processing involves posterior regions along the ventral stream, object meaning involves more anterior regions, especially perirhinal cortex. Here we investigate visuo-semantic processing by combining a deep neural network model of vision with an attractor network model of semantics, such that visual information maps onto object meanings represented as activation patterns across features. In the combined model, concept activation is driven by visual input and co-occurrence of semantic features, consistent with neurocognitive accounts. We tested the model’s ability to explain fMRI data where participants named objects. Visual layers explained activation patterns in early visual cortex, whereas pattern-information in perirhinal cortex was best explained by later stages of the attractor network, when detailed semantic representations are activated. Posterior ventral temporal cortex was best explained by intermediate stages corresponding to initial semantic processing, when visual information has the greatest influence on the emerging semantic representation. These results provide proof of principle of how a mechanistic model of combined visuo-semantic processing can account for pattern-information in the ventral stream.
机译:识别对象涉及快速的视觉处理和有关该对象的语义知识的激活,但是尚不清楚视觉处理如何激活并与语义表示进行交互。认知神经科学研究表明,尽管视觉处理涉及腹侧流的后部区域,但物体的含义涉及更多的前部区域,尤其是周围皮层。在这里,我们通过结合视觉的深度神经网络模型和语义的吸引者网络模型来研究视觉语义处理,从而使视觉信息映射到表示为跨特征的激活模式的对象含义。在组合模型中,概念激活由视觉输入和语义特征的同时出现来驱动,这与神经认知描述一致。我们测试了该模型解释功能磁共振成像数据的能力,参与者将其命名为对象。视觉层解释了早期视觉皮层中的激活模式,而当详细的语义表示被激活时,周围神经皮质中的模式信息最好由吸引器网络的后期解释。当视觉信息对新兴语义表示的影响最大时,后腹颞叶皮质最好用对应于初始语义处理的中间阶段来解释。这些结果提供了原理的证据,证明了组合视觉语义处理的机械模型如何解释腹侧流中的模式信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号