首页> 美国卫生研究院文献>Scientific Reports >A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment
【2h】

A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment

机译:流域贝叶斯混合模型的反卷积贝叶斯分配方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasing complexity in human-environment interactions at multiple watershed scales presents major challenges to sediment source apportionment data acquisition and analysis. Herein, we present a step-change in the application of Bayesian mixing models: Deconvolutional-MixSIAR (D-MIXSIAR) to underpin sustainable management of soil and sediment. This new mixing model approach allows users to directly account for the ‘structural hierarchy’ of a river basin in terms of sub-watershed distribution. It works by deconvoluting apportionment data derived for multiple nodes along the stream-river network where sources are stratified by sub-watershed. Source and mixture samples were collected from two watersheds that represented (i) a longitudinal mixed agricultural watershed in the south west of England which had a distinct upper and lower zone related to topography and (ii) a distributed mixed agricultural and forested watershed in the mid-hills of Nepal with two distinct sub-watersheds. In the former, geochemical fingerprints were based upon weathering profiles and anthropogenic soil amendments. In the latter compound-specific stable isotope markers based on soil vegetation cover were applied. Mixing model posterior distributions of proportional sediment source contributions differed when sources were pooled across the watersheds (pooled-MixSIAR) compared to those where source terms were stratified by sub-watershed and the outputs deconvoluted (D-MixSIAR). In the first example, the stratified source data and the deconvolutional approach provided greater distinction between pasture and cultivated topsoil source signatures resulting in a different posterior distribution to non-deconvolutional model (conventional approaches over-estimated the contribution of cultivated land to downstream sediment by 2 to 5 times). In the second example, the deconvolutional model elucidated a large input of sediment delivered from a small tributary resulting in differences in the reported contribution of a discrete mixed forest source. Overall D-MixSIAR model posterior distributions had lower (by ca 25–50%) uncertainty and quicker model run times. In both cases, the structured, deconvoluted output cohered more closely with field observations and local knowledge underpinning the need for closer attention to hierarchy in source and mixture terms in river basin source apportionment. Soil erosion and siltation challenge the energy-food-water-environment nexus. This new tool for source apportionment offers wider application across complex environmental systems affected by natural and human-induced change and the lessons learned are relevant to source apportionment applications in other disciplines.
机译:在多个流域尺度上,人与环境相互作用的复杂性不断提高,对沉积物源分配数据的采集和分析提出了重大挑战。在这里,我们提出了贝叶斯混合模型应用中的一个阶段性变化:反卷积混合SIAR(D-MIXSIAR)以支持土壤和沉积物的可持续管理。这种新的混合模型方法使用户可以根据子集水区的分布直接考虑流域的“结构层次”。它通过对沿河流河流网络中多个节点得出的分配数据进行反卷积来进行工作,在河流河流中,源由子分水岭分层。来源和混合样品是从两个流域收集的,这两个流域代表(i)英格兰西南部的纵向混合农业流域,其具有与地形相关的明显的上下区域,以及(ii)中部是分布式的农业和森林混合流域尼泊尔的丘陵,有两个不同的分水岭。在前者中,地球化学指纹是基于风化剖面和人为土壤改良剂的。在后者中,使用了基于土壤植被覆盖的化合物特异性稳定同位素标记。当将源汇聚在分水岭上时(池-MixSIAR),与按子集水流分层源项反褶积(D-MixSIAR)的源相比,按比例分配的沉积物源贡献的混合模型后验分布有所不同。在第一个示例中,分层的源数据和反卷积方法在牧场和耕作表土源特征之间提供了更大的区别,导致非反卷积模型的后验分布不同(传统方法高估了耕地对下游沉积物的贡献2至5次)。在第二个示例中,反卷积模型阐明了从小支流输送来的大量泥沙输入,从而导致所报告的离散混合森林源贡献的差异。总体而言,D-MixSIAR模型的后验分布具有较低的不确定性(约25%至50%)和更快的模型运行时间。在这两种情况下,结构化,去卷积的输出与实地观测和当地知识之间的联系更加紧密,从而有必要在流域源头分配中更加关注源和混合项的层次结构。水土流失和淤积挑战了能源-食物-水-环境的关系。这种用于源分配的新工具可在受自然和人为变化影响的复杂环境系统中更广泛地应用,并且所汲取的教训与其他学科中的源分配应用有关。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号