首页> 美国卫生研究院文献>Scientific Reports >Negative Capacitance as Universal Digital and Analog Performance Booster for Complementary MOS Transistors
【2h】

Negative Capacitance as Universal Digital and Analog Performance Booster for Complementary MOS Transistors

机译:负电容作为互补MOS晶体管的通用数字和模拟性能增强器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Boltzmann electron energy distribution poses a fundamental limit to lowering the energy dissipation of conventional MOS devices, a minimum increase of the gate voltage, i.e. 60 mV, is required for a 10-fold increase in drain-to-source current at 300 K. Negative Capacitance (NC) in ferroelectric materials is proposed in order to address this physical limitation of CMOS technology. A polarization destabilization in ferroelectrics causes an effective negative permittivity, resulting in a differential voltage amplification and a reduced subthreshold swing when integrated into the gate stack of a transistor. The novelty and universality of this approach relate to the fact that the gate stack is not anymore a passive part of the transistor and contributes to signal amplification. In this paper, we experimentally validate NC as a universal performance booster: (i) for complementary MOSFETs, of both n- and p-type in an advanced CMOS technology node, and, (ii) for both digital and analog significant enhancements of key figures of merit for information processing (subthreshold swing, overdrive, and current efficiency factor). Accordingly, a sub-thermal swing down to 10 mV/decade together with an enhanced current efficiency factor up to 105 V−1 is obtained in both n- and p-type MOSFETs at room temperature by exploiting a PZT capacitor as the NC booster. As a result of the subthreshold swing reduction and overdrive improvement observed by NC, the required supply voltage to provide the same on-current is reduced by approximately 50%.
机译:玻尔兹曼电子能量分布对降低传统MOS器件的能量耗散构成了根本限制,在300 K下漏极至源极电流增加10倍时,栅极电压的最小增加(即60 mV)是必需的。提出了铁电材料中的电容(NC),以解决CMOS技术的这一物理限制。铁电体中的极化不稳定会导致有效的负介电常数,从而在集成到晶体管的栅极叠层中时会产生差分电压放大并降低亚阈值摆幅。这种方法的新颖性和普遍性涉及以下事实:栅极堆叠不再是晶体管的无源部分,而是有助于信号放大。在本文中,我们通过实验验证了NC是通用的性能提升器:(i)用于先进CMOS技术节点中的n型和p型互补MOSFET,以及(ii)数字和模拟关键功能的显着增强信息处理的优值(阈值下摆幅,过载和电流效率系数)。因此,在n-和p-中均获得了低至10 mV /十倍的亚热摆幅以及高达10 5 V -1 的增强的电流效率因子。室温下通过使用PZT电容器作为NC升压器来制造MOSFET。 NC观察到亚阈值摆幅减小和过驱动改善的结果是,提供相同导通电流所需的电源电压降低了约50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号