首页> 美国卫生研究院文献>Scientific Reports >Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination
【2h】

Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination

机译:重新审视半导体的光学带隙并提出确定其的统一方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Along the last two centuries, the story of semiconductor materials ranged from a mix of disbelief and frustration to one of the most successful technological achievements ever seen. Such a progress comprised the development of materials and models that, allied to the knowledge provided by spectroscopic techniques, resulted in the (nowadays) omnipresent electronic gadgets. Within this context, optically-based methods were of special importance since, amongst others, they presented details about the electronic states and energy bandgap Egap of semiconductors which, ultimately, decided about their application in devices. Stimulated by these aspects, this work investigated the semiconductors silicon, germanium, and gallium-arsenide in the crystalline (bulk and powder) and amorphous (film) forms. The detailed analysis of the experimental results indicates that accurate Egap values can be obtained by fitting a sigmoid (Boltzmann) function to their corresponding optical absorption spectra. The method is straightforward and, contrary to the traditional approaches to determine Egap, it is exempt from errors due to experimental spectra acquisition and data processing. Additionally, it complies with the requirements of direct, indirect, and amorphous bandgap semiconductors, and it is able to probe the (dis)order of the material as well. In view of these characteristics, a new−unified methodology based on the fitting of the absorption spectrum with a Boltzmann function is being proposed to efficiently determine the optical bandgap of semiconductor materials.
机译:在过去的两个世纪中,半导体材料的发展历程从疑惑与挫折混合到有史以来最成功的技术成就之一。这样的进展包括材料和模型的开发,这些材料和模型与光谱技术提供的知识相关联,导致了(当今)无所不在的电子产品。在此背景下,基于光学的方法尤其重要,因为它们尤其提出了有关半导体的电子态和能带隙Egap的详细信息,最终决定了它们在设备中的应用。受这些方面的刺激,这项工作研究了晶体(散装和粉末)和非晶(薄膜)形式的半导体硅,锗和砷化镓。对实验结果的详细分析表明,可以通过将S型(Boltzmann)函数拟合到其相应的光吸收光谱来获得准确的Egap值。该方法简单易行,与确定Egap的传统方法相反,它免于由于实验光谱采集和数据处理而产生的误差。此外,它符合直接,间接和非晶带隙半导体的要求,并且还能够探测材料的(无序)排列。考虑到这些特性,正在提出一种基于吸收光谱与玻尔兹曼函数拟合的新的统一方法,以有效地确定半导体材料的光学带隙。

著录项

  • 期刊名称 Scientific Reports
  • 作者

    A. R. Zanatta;

  • 作者单位
  • 年(卷),期 -1(9),-1
  • 年度 -1
  • 页码 11225
  • 总页数 12
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号