首页> 外文学位 >Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors.
【24h】

Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors.

机译:窄带隙半导体中载流子动力学和光学非线性的时间分辨测量。

获取原文
获取原文并翻译 | 示例

摘要

All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as a next generation source of these materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential transmission measurements are used here to demonstrate that Ga-free InAs/InAsSb T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements at 77 K provided minority carrier lifetimes of 9 μs and 3 μs for an unintentionally doped mid-wave infrared (MWIR) InAs/InAsSb T2SL and InAsSb alloy, respectively; a two order of magnitude increase compared to the 90 ns minority carrier lifetime measured in a comparable MWIR InAs/GaSb T2SL. Through temperature-dependent lifetime measurements, the various carrier recombination processes are differentiated and the dominant mechanisms identified for each material. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs for potentially improved infrared photodetectors.;In addition to carrier lifetimes, the drift and diffusion of excited charge carriers through the superlattice growth layers (i.e. vertical transport) directly affects the performance of photodetectors and emitters. Unfortunately, there is a lack of information pertaining to vertical transport, primarily due to difficulties in making measurements on thin growth layers and the need for non-standard measurement techniques. However, all-optical ultrafast techniques are successfully used here to directly measure vertical diffusion in MWIR InAs/GaSb T2SLs. By optically generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04±0.03 cm2/s and 4.7±0.5 cm2/s, corresponding to vertical mobilities of 6±5 cm 2/Vs and 700±80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices.;Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.
机译:全光时间分辨测量技术为研究决定红外光电探测器和发射器半导体材料性能的关键参数提供了强大的工具。窄带InAs / GaSb II型超晶格(T2SL)由于具有优越的固有特性和多功能性,因此有望作为这些材料的下一代来源。不幸的是,InAs / GaSb T2SL受到寄生的Shockley-Read-Hall复合中心的困扰,该中心缩短了载流子寿命并限制了器件性能。超快泵浦探针技术和时间分辨的差分传输测量用于证明无镓InAs / InAsSb T2SLs和InAsSb合金没有相同的限制,因此具有更长的载流子寿命。在77 K的测量下,无意掺杂的中波红外(MWIR)InAs / InAsSb T2SL和InAsSb合金的少数载流子寿命分别为9μs和3μs;与在类似的MWIR InAs / GaSb T2SL中测得的90 ns少数载流子寿命相比,增加了两个数量级。通过温度相关的寿命测量,可以区分各种载流子重组过程,并确定每种材料的主要机理。这些结果表明,与潜在的改进的红外光电探测器相比,这些无镓材料是优于InAs / GaSb T2SL的可行选择。;除了载流子寿命之外,激发电荷载流子在超晶格生长层中的漂移和扩散(即垂直传输)直接影响。光电探测器和发射器的性能。不幸的是,缺乏有关垂直传输的信息,这主要是由于难以在薄生长层上进行测量以及对非标准测量技术的需求。但是,这里成功使用了全光学超快技术来直接测量MWIR InAs / GaSb T2SLs中的垂直扩散。通过在MWIR T2SL一端附近产生多余的载流子,并测量到另一端的薄的2个带隙较窄的超晶格的传输时间,可以确定垂直扩散载流子的飞行时间。通过研究77 K处的无意掺杂和p型超晶格,确定垂直空穴和电子扩散系数分别为0.04±0.03 cm2 / s和4.7±0.5 cm2 / s,对应于垂直迁移率6±5 cm 2 / Vs和700±80 cm2 / Vs。据我所知,这些测量是对窄带隙超晶格中垂直传输特性的首次直接测量。最后,本研究中使用的可广泛调谐的双色超快激光系统允许对窄带隙中的非线性光学特性进行研究。半导体。在块体n型GaSb的非简并双光子吸收光谱的77 K处进行的时间分辨测量提供了有关该材料的吸收和双光子吸收系数的非共振变化的新信息。此外,由于在较宽的光学频率范围内测量了非简并光谱,因此通过Kramers-Kronig变换可以计算非简并非线性折射率的色散。

著录项

  • 作者

    Olson, Benjamin Varberg.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Physics Solid State.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 253 p.
  • 总页数 253
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号