首页> 美国卫生研究院文献>Scientific Reports >Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements
【2h】

Multiphoton photochemical crosslinking-based fabrication of protein micropatterns with controllable mechanical properties for single cell traction force measurements

机译:基于多光子光化学交联的蛋白质微图案的制备该蛋白质微图案具有可控的机械性能可用于单细胞牵引力测量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Engineering 3D microstructures with predetermined properties is critical for stem cell niche studies. We have developed a multiphoton femtosecond laser-based 3D printing platform, which generates complex protein microstructures in minutes. Here, we used the platform to test a series of fabrication and reagent parameters in precisely controlling the mechanical properties of protein micropillars. Atomic force microscopy was utilized to measure the reduced elastic modulus of the micropillars, and transmission electron microscopy was used to visualize the porosity of the structures. The reduced elastic modulus of the micropillars associated positively and linearly with the scanning power. On the other hand, the porosity and pore size of the micropillars associated inversely and linearly with the scanning power and reagent concentrations. While keeping the elastic modulus constant, the stiffness of the micropillars was controlled by varying their height. Subsequently, the single cell traction forces of rabbit chondrocytes, human dermal fibroblasts, human mesenchymal stem cells, and bovine nucleus pulposus cells (bNPCs) were successfully measured by culturing the cells on micropillar arrays of different stiffness. Our results showed that the traction forces of all groups showed positive relationship with stiffness, and that the chondrocytes and bNPCs generated the highest and lowest traction forces, respectively.
机译:具有预定特性的工程3D微观结构对于干细胞生态位研究至关重要。我们已经开发了基于多光子飞秒激光的3D打印平台,该平台可在几分钟内生成复杂的蛋白质微结构。在这里,我们使用该平台测试了一系列制备和试剂参数,以精确控制蛋白质微柱的机械性能。原子力显微镜用于测量微柱的降低的弹性模量,透射电子显微镜用于可视化结构的孔隙率。降低的微柱的弹性模量与扫描功率成正比和线性关系。另一方面,微柱的孔隙率和孔径与扫描能力和试剂浓度成反比和线性关系。在保持弹性模量不变的同时,通过改变微柱的高度来控制其刚度。随后,通过在不同刚度的微柱阵列上培养细胞,成功测量了兔软骨细胞,人真皮成纤维细胞,人间充质干细胞和牛髓核细胞(bNPC)的单细胞牵引力。我们的结果表明,所有组的牵引力均与刚度呈正相关,而软骨细胞和bNPC分别产生最高和最低牵引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号