首页> 外文学位 >Interfacial biomolecular engineering: Controlling material-protein-cell interactions through micropatterning.
【24h】

Interfacial biomolecular engineering: Controlling material-protein-cell interactions through micropatterning.

机译:界面生物分子工程:通过微图案控制材料-蛋白质-细胞相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Emerging biomolecular patterning techniques provide us with powerful tools to interrogate complex interfacial biological phenomena through the controlled placement of relevant molecules at microscale and nanoscale resolutions. Characterization methods such as optical imaging and scanning force microscopies (SFM) additionally leverage our ability to understand the molecular signals present in model surfaces and our ability to interpret biological and molecular interactions at submicrometer scales. In this work, chemical and protein micropatterning methods have been applied to investigate the phenomena of protein spatial-temporal adsorption kinetics on heterogeneous surfaces, in vitro protein deposition bioactivity and resulting effects on cell adhesion and phenotypic expression, and neuronal integration of and adaptation to graded permissive and inhibitory signals.; Protein binding kinetics and spatial distribution were imaged and quantified on micropatterned heterogeneous organosilane films employing a fluorescence microscopy (FM) and image analysis technique. A novel dual protein patterning method was developed for cell choice assays and characterized through SFM, FM, and protein integrin epitope presentation. Protein submicroscale organization and epitope availability were then related to neuronal cell attachment and neurite outgrowth behavior in the presence of permissive, nonpermissive, and inhibitory signals. Based on observations from these studies, a microfabrication process was devised to print multiple distinct densities of the inhibitory proteoglycan aggrecan in the form of micro-island arrays on a single homogeneous growth promoting laminin field. Time lapse video microscopy, integrin receptor labeling and functional block, FM, and total internal reflection fluorescence microscopy, were used to investigate neuronal responses to graded and changing inhibitory substratum bound signals during growth cone signal integration, pathfinding, and adaptation.; It was found that protein interactions with submicroscale surface heterogeneities provides for an accurate model of interfacial protein adsorption, that nonspecific adsorption proceeds at faster rates and results in lower surface densities than do molecular specific driven binding events, that the method of laminin deposition in the presence of aggrecan and final integrin presentation are powerful predictors of neurite outgrowth, and that neuronal adaptation to aggrecan is dose and time dependent. Through these experiments, the utility of micropatterning is demonstrated for several unique biological phenomena.
机译:新兴的生物分子图案化技术为我们提供了强大的工具,可通过以微米级和纳米级分辨率对相关分子进行可控制的布置来询问复杂的界面生物学现象。诸如光学成像和扫描力显微镜(SFM)之类的表征方法还利用了我们对模型表面中存在的分子信号的理解能力,以及我们在亚微米尺度上解释生物学和分子相互作用的能力。在这项工作中,已应用化学和蛋白质微模式研究方法研究了异质表面上蛋白质时空吸附动力学,体外蛋白质沉积生物活性及其对细胞黏附和表型表达以及由此产生的神经元整合和适应分级的现象。允许和抑制信号。使用荧光显微镜(FM)和图像分析技术,在微图案化的异质有机硅烷薄膜上对蛋白质结合动力学和空间分布进行成像和定量。开发了一种新颖的双重蛋白质构图方法用于细胞选择测定,并通过SFM,FM和蛋白质整联蛋白表位呈递进行了表征。然后,在存在允许,禁止和抑制信号的情况下,蛋白质亚微米级组织和表位可用性与神经元细胞附着和神经突生长行为有关。基于这些研究的观察结果,设计了一种微细加工工艺,以在单个均质生长促进层粘连蛋白场上以微岛阵列的形式印刷多种不同密度的抑制蛋白聚糖聚集蛋白聚糖。延时视频显微镜,整联蛋白受体标记和功能块,FM和全内反射荧光显微镜用于研究在生长锥信号整合,寻路和适应过程中神经元对分级和变化的抑制性基质结合信号的反应。已发现蛋白质与亚微米级表面异质性的相互作用提供了界面蛋白质吸附的准确模型,与分子特异性驱动的结合事件相比,非特异性吸附以更快的速率进行并且导致较低的表面密度,层粘连蛋白沉积的方法存在聚集蛋白聚糖和最终整联蛋白的表达是神经突向外生长的有力预测因子,并且神经元对聚集蛋白聚糖的适应性是剂量和时间依赖性。通过这些实验,证明了微图案化对几种独特的生物学现象的实用性。

著录项

  • 作者

    Hodgkinson, Gerald Nye, Jr.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Biomedical.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号