首页> 美国卫生研究院文献>Scientific Reports >Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism
【2h】

Morphological Transformation between Nanocoils and Nanoribbons via Defragmentation Structural Rearrangement or Fragmentation-recombination Mechanism

机译:纳米线圈和纳米带通过碎片整理结构重排或碎片重组机制的形态转化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kinetic control over the assembly pathways towards novel metastable functional materials or far-from-equilibrium systems has been much less studied compared to the thermodynamic equilibrium self-assembly. Herein, we report the distinct morphological transformation between nanocoils and nanoribbons in the self-assembly of unsymmetric perylene diimide (PDI) molecules. We demonstrate that the morphological transformation of the kinetically trapped assemblies into the thermodynamically stable forms proceeds via two distinct mechanisms, i.e., a direct structural rearrangement (molecule 1 or 2) and a fragmentation-recombination mechanism (molecule 4), respectively. The subtle interplay of the steric hindrance of the bulky substituents and the flexibility of the linker structure between the bulky moiety and the perylene core was demonstrated to enable the effective modulation of the energetic landscape of the assemblies and thus modulation of the assembly pathways. Herein, our work presents a new approach to control the self-assembly pathways and thereby can be used to achieve novel far-from-equilibrium systems.
机译:与热力学平衡自组装相比,对新型亚稳态功能材料或远离平衡系统的组装路径的动力学控制进行的研究较少。在本文中,我们报道了不对称per二酰亚胺(PDI)分子自组装中纳米线圈和纳米带之间的独特形态转变。我们证明了动力学捕获的组件向热力学稳定形式的形态转化是通过两种不同的机理进行的,即直接结构重排(分子1或2)和片段重组机制(分子4)。庞大的取代基的空间位阻的微妙相互作用和庞大的部分与the分子之间的连接结构的柔韧性被证明可以有效地调节组装体的能量结构,从而调节组装路径。在这里,我们的工作提出了一种控制自组装路径的新方法,从而可用于实现新颖的远离平衡系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号