首页> 美国卫生研究院文献>Scientific Reports >A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production
【2h】

A novel programmable lysozyme-based lysis system in Pseudomonas putida for biopolymer production

机译:恶臭假单胞菌中用于生物聚合物生产的新型基于可编程溶菌酶的裂解系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell lysis is crucial for the microbial production of industrial fatty acids, proteins, biofuels, and biopolymers. In this work, we developed a novel programmable lysis system based on the heterologous expression of lysozyme. The inducible lytic system was tested in two Gram-negative bacterial strains, namely Escherichia coli and Pseudomonas putida KT2440. Before induction, the lytic system did not significantly arrest essential physiological parameters in the recombinant E. coli (ECPi) and P. putida (JBOi) strain such as specific growth rate and biomass yield under standard growth conditions. A different scenario was observed in the recombinant JBOi strain when subjected to PHA-producing conditions, where biomass production was reduced by 25% but the mcl-PHA content was maintained at about 30% of the cell dry weight. Importantly, the genetic construct worked well under PHA-producing conditions (nitrogen-limiting phase), where more than 95% of the cell population presented membrane disruption 16 h post induction, with 75% of the total synthesized biopolymer recovered at the end of the fermentation period. In conclusion, this new lysis system circumvents traditional, costly mechanical and enzymatic cell-disrupting procedures.
机译:细胞裂解对于微生物生产工业脂肪酸,蛋白质,生物燃料和生物聚合物至关重要。在这项工作中,我们开发了一种新型的基于溶菌酶异源表达的可编程裂解系统。在两种革兰氏阴性细菌菌株,即大肠杆菌和恶臭假单胞菌KT2440中测试了诱导型裂解系统。在诱导之前,裂解系统没有显着抑制重组大肠杆菌(ECPi)和恶臭假单胞菌(JBOi)菌株的基本生理参数,例如标准生长条件下的比生长速率和生物量产量。在经受PHA生产的条件下,重组JBOi菌株观察到了不同的情况,其中生物量生产减少了25%,但mcl-PHA含量保持在细胞干重的约30%。重要的是,该遗传构建体在PHA产生条件(氮限制阶段)下运作良好,在该条件下,超过95%的细胞群体在诱导后16 h出现膜破坏,在合成结束时回收了全部合成生物聚合物的75%。发酵期。总之,这种新的裂解系统规避了传统的,昂贵的机械和酶促细胞破坏程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号