首页> 美国卫生研究院文献>Scientific Reports >A deep learning framework to discern and count microscopic nematode eggs
【2h】

A deep learning framework to discern and count microscopic nematode eggs

机译:识别和计数细线虫卵的深度学习框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to identify and control the menace of destructive pests via microscopic image-based identification state-of-the art deep learning architecture is demonstrated on the parasitic worm, the soybean cyst nematode (SCN), Heterodera glycines. Soybean yield loss is negatively correlated with the density of SCN eggs that are present in the soil. While there has been progress in automating extraction of egg-filled cysts and eggs from soil samples counting SCN eggs obtained from soil samples using computer vision techniques has proven to be an extremely difficult challenge. Here we show that a deep learning architecture developed for rare object identification in clutter-filled images can identify and count the SCN eggs. The architecture is trained with expert-labeled data to effectively build a machine learning model for quantifying SCN eggs via microscopic image analysis. We show dramatic improvements in the quantification time of eggs while maintaining human-level accuracy and avoiding inter-rater and intra-rater variabilities. The nematode eggs are correctly identified even in complex, debris-filled images that are often difficult for experts to identify quickly. Our results illustrate the remarkable promise of applying deep learning approaches to phenotyping for pest assessment and management.
机译:为了通过基于微观图像的识别来识别和控制破坏性有害生物的威胁,在寄生虫,大豆囊肿线虫(SCN),异型异形藻甘氨酸上展示了最新的深度学习架构。大豆的产量损失与土壤中存在的SCN卵的密度呈负相关。尽管在从土壤样品中自动提取装满卵的囊肿和卵方面取得了进展,但是使用计算机视觉技术对从土壤样品中获得的SCN卵进行计数已被证明是一项极为困难的挑战。在这里,我们显示了为在杂乱填充的图像中稀有物体识别而开发的深度学习体系结构可以识别和计数SCN卵。该架构接受了专家标记的数据的培训,可以有效地构建用于通过显微镜图像分析对SCN卵进行量化的机器学习模型。我们展示了鸡蛋定量时间的显着改善,同时保持了人类水平的准确性,并避免了评分者之间和评分者内部的差异。即使在复杂,充满碎片的图像中,也可以正确识别线虫卵,这通常使专家难以快速识别。我们的结果说明了将深度学习方法应用于表型分析以进行有害生物评估和管理的巨大希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号