首页> 美国卫生研究院文献>Scientific Reports >Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images
【2h】

Objective risk stratification of prostate cancer using machine learning and radiomics applied to multiparametric magnetic resonance images

机译:使用机器学习和放射线学应用于多参数磁共振图像的前列腺癌客观风险分层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multiparametric magnetic resonance imaging (mpMRI) has become increasingly important for the clinical assessment of prostate cancer (PCa), but its interpretation is generally variable due to its relatively subjective nature. Radiomics and classification methods have shown potential for improving the accuracy and objectivity of mpMRI-based PCa assessment. However, these studies are limited to a small number of classification methods, evaluation using the AUC score only, and a non-rigorous assessment of all possible combinations of radiomics and classification methods. This paper presents a systematic and rigorous framework comprised of classification, cross-validation and statistical analyses that was developed to identify the best performing classifier for PCa risk stratification based on mpMRI-derived radiomic features derived from a sizeable cohort. This classifier performed well in an independent validation set, including performing better than PI-RADS v2 in some aspects, indicating the value of objectively interpreting mpMRI images using radiomics and classification methods for PCa risk assessment.
机译:多参数磁共振成像(mpMRI)对于前列腺癌(PCa)的临床评估已变得越来越重要,但是由于其相对主观的性质,其解释通常是可变的。放射学和分类方法已显示出潜力,可以提高基于mpMRI的PCa评估的准确性和客观性。但是,这些研究仅限于少数分类方法,仅使用AUC评分进行评估以及对放射线学和分类方法的所有可能组合进行的不严格评估。本文提出了一个由分类,交叉验证和统计分析组成的系统而严谨的框架,该框架旨在根据来自大量人群的mpMRI衍生放射学特征,确定PCa风险分层的最佳性能分类器。该分类器在独立的验证集中表现良好,包括在某些方面比PI-RADS v2更好,表明使用放射线学和分类方法客观地解释mpMRI图像对于PCa风险评估的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号