首页> 美国卫生研究院文献>SpringerPlus >Application of variance components estimation to calibrate geoid error models
【2h】

Application of variance components estimation to calibrate geoid error models

机译:方差分量估计在校准大地水准面误差模型中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model.
机译:使用全球定位系统水准数据获取正高的方法已经得到了很好的研究。在较早的工作中已经提出了加权最小二乘问题的简单公式。这种表述允许直接使用变量误差模型,该模型完全描述了可观测变量的协方差矩阵。但是,这个传统的公式还不能令人满意地解决一个重要的问题,即可以达到什么精度水平。造成这种情况的主要原因之一是调整中随机模型的不正确性,从而可以改善测量噪声的随机模型。因此,在确定具有不同高度类型的组合调整中确定可观察物的随机模型的问题将是本文的重点。首先,采用公知的方差分量估计方法来校准椭圆,正高和重力大地水准面的最小二乘组合中的异质高度数据的误差。具体来说,最小范数二次无偏估计的迭代算法用于估计每个异构观测的方差分量。其次,提出了两种不同的统计模型来说明这一理论。第一种方法直接将变量误差用作先验协方差矩阵,第二种方法分析方差分量的偏差,然后提出经偏差校正的方差估计量。若干数值测试结果表明,在校准大地水准面误差模型的组合调整中,方差分量估计程序的能力和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号