首页> 美国卫生研究院文献>Nature Communications >Predicting phase behavior of grain boundaries with evolutionary search and machine learning
【2h】

Predicting phase behavior of grain boundaries with evolutionary search and machine learning

机译:通过进化搜索和机器学习预测晶界的相行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of grain boundary phase transitions is an emerging field until recently dominated by experiments. The major bottleneck in the exploration of this phenomenon with atomistic modeling has been the lack of a robust computational tool that can predict interface structure. Here we develop a computational tool based on evolutionary algorithms that performs efficient grand-canonical grain boundary structure search and we design a clustering analysis that automatically identifies different grain boundary phases. Its application to a model system of symmetric tilt boundaries in Cu uncovers an unexpected rich polymorphism in the grain boundary structures. We find new ground and metastable states by exploring structures with different atomic densities. Our results demonstrate that the grain boundaries within the entire misorientation range have multiple phases and exhibit structural transitions, suggesting that phase behavior of interfaces is likely a general phenomenon.
机译:直到最近由实验主导的研究晶界相变是一个新兴领域。利用原子建模探索此现象的主要瓶颈是缺少可预测界面结构的强大计算工具。在这里,我们开发了一种基于进化算法的计算工具,该工具可以执行有效的大正典晶粒边界结构搜索,并设计一种能够自动识别不同晶粒边界相的聚类分析。它在铜的对称倾斜边界模型系统中的应用揭示了晶界结构中出乎意料的丰富多态性。通过探索具有不同原子密度的结构,我们发现了新的基态和亚稳态。我们的结果表明,在整个取向错误的范围内,晶界具有多个相并表现出结构转变,这表明界面的相行为可能是普遍现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号