首页> 美国卫生研究院文献>Scientific Reports >Biological learning curves outperform existing ones in artificial intelligence algorithms
【2h】

Biological learning curves outperform existing ones in artificial intelligence algorithms

机译:生物学习曲线优于人工智能算法中的现有曲线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, deep learning algorithms have outperformed human experts in various tasks across several domains; however, their characteristics are distant from current knowledge of neuroscience. The simulation results of biological learning algorithms presented herein outperform state-of-the-art optimal learning curves in supervised learning of feedforward networks. The biological learning algorithms comprise asynchronous input signals with decaying input summation, weights adaptation, and multiple outputs for an input signal. In particular, the generalization error for such biological perceptrons decreases rapidly with increasing number of examples, and it is independent of the size of the input. This is achieved using either synaptic learning, or solely through dendritic adaptation with a mechanism of swinging between reflecting boundaries, without learning steps. The proposed biological learning algorithms outperform the optimal scaling of the learning curve in a traditional perceptron. It also results in a considerable robustness to disparity between weights of two networks with very similar outputs in biological supervised learning scenarios. The simulation results indicate the potency of neurobiological mechanisms and open opportunities for developing a superior class of deep learning algorithms.
机译:最近,在多个领域的各种任务中,深度学习算法的性能均优于人类专家。但是,它们的特征与当前的神经科学知识相去甚远。本文介绍的生物学习算法的仿真结果优于前馈网络的监督学习中的最新最佳学习曲线。生物学习算法包括异步输入信号,该输入信号具有递减的输入总和,权重自适应和输入信号的多个输出。尤其是,随着示例数量的增加,此类生物感知器的泛化误差会迅速降低,并且与输入的大小无关。这可以通过使用突触学习或仅通过树突适应(具有反射边界之间的摆动机制)来实现,而无需学习步骤。所提出的生物学习算法优于传统感知器中学习曲线的最佳缩放比例。在生物学监督学习场景中,这也导致输出非常相似的两个网络的权重之间的差异具有显着的鲁棒性。仿真结果表明,神经生物学机制的潜力以及开发高级类深度学习算法的开放机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号