首页> 美国卫生研究院文献>Journal of Experimental Botany >Disruption of the mitochondrial alternative oxidase (AOX) and uncoupling protein (UCP) alters rates of foliar nitrate and carbon assimilation in Arabidopsis thaliana
【2h】

Disruption of the mitochondrial alternative oxidase (AOX) and uncoupling protein (UCP) alters rates of foliar nitrate and carbon assimilation in Arabidopsis thaliana

机译:拟南芥中线粒体替代氧化酶(AOX)和解偶联蛋白(UCP)的破坏改变了硝酸盐和碳同化率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Under high light, the rates of photosynthetic CO2 assimilation can be influenced by reductant consumed by both foliar nitrate assimilation and mitochondrial alternative electron transport (mAET). Additionally, nitrate assimilation is dependent on reductant and carbon skeletons generated from both the chloroplast and mitochondria. However, it remains unclear how nitrate assimilation and mAET coordinate and contribute to photosynthesis. Here, hydroponically grown Arabidopsis thaliana T-DNA insertional mutants for alternative oxidase (AOX1A) and uncoupling protein (UCP1) fed either NO3 or NH4 + were used to determine (i) the response of NO3 uptake and assimilation to the disruption of mAET, and (ii) the interaction of N source (NO3 versus NH4 +) and mAET on photosynthetic CO2 assimilation and electron transport. The results showed that foliar NO3 assimilation was enhanced in both aox1a and ucp1 compared with the wild-type, suggesting that foliar NO3 assimilation is probably driven by a decreased capacity of mAET and an increase in reductant within the cytosol. Wild-type plants had also higher rates of net CO2 assimilation (A net) and quantum yield of PSII (ϕPSII) under NO3 feeding compared with NH4 + feeding. Additionally, under NO3 feeding, A net and ϕPSII were decreased in aox1a and ucp1 compared with the wild type; however, under NH4 + they were not significantly different between genotypes. This indicates that NO3 assimilation and mAET are both important to maintain optimal rates of photosynthesis, probably in regulating reductant accumulation and over-reduction of the chloroplastic electron transport chain. These results highlight the importance of mAET in partitioning energy between foliar nitrogen and carbon assimilation.
机译:在强光下,叶面硝酸盐同化和线粒体交替电子传递(mAET)消耗的还原剂会影响光合作用的CO2同化速率。此外,硝酸盐的吸收取决于叶绿体和线粒体产生的还原剂和碳骨架。然而,尚不清楚硝酸盐同化和mAET如何协调并促进光合作用。在这里,使用水培生长的拟南芥T-DNA插入突变体来替代NO3 或NH4 + 供给的替代氧化酶(AOX1A)和解偶联蛋白(UCP1)(i )NO3 吸收和同化对mAET破坏的响应,以及(ii)N源(NO3 与NH4 + )和mAET对光合作用CO2同化和电子传输的影响。结果表明,与野生型相比,aox1a和ucp1的叶面NO3 同化均得到增强,表明叶面NO3 的同化作用可能是由于降低了mAET和胞浆内还原剂的增加。与NH4 + 饲喂相比,野生型植物在NO3 -饲喂下的净CO2同化率(A net)和PSII(ϕPSII)的量子产率也更高。另外,在NO3 喂养下,aox1a和ucp1的A net和ϕ PSII 与野生型相比有所降低;然而,在NH 4 + 下,它们在基因型之间没有显着差异。这表明NO 3 同化和mAET均对维持光合作用的最佳速率很重要,可能在调节还原剂积累和叶绿体电子传输链的过度还原中起着重要作用。这些结果突出了mAET在叶面氮和碳同化之间分配能量的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号