首页> 外文期刊>Plant and Cell Physiology >The Absence of Alternative Oxidase AOX1A Results in Altered Response of Photosynthetic Carbon Assimilation to Increasing CO2 in Arabidopsis thaliana
【24h】

The Absence of Alternative Oxidase AOX1A Results in Altered Response of Photosynthetic Carbon Assimilation to Increasing CO2 in Arabidopsis thaliana

机译:替代氧化酶AOX1A的缺乏导致拟南芥光合碳同化对增加CO 2 的响应改变

获取原文
获取原文并翻译 | 示例
           

摘要

In higher plants, the mitochondrial electron transport chain has non-phosphorylating alternative pathways that include the alternative terminal oxidase (AOX). This alternative pathway has been suggested to act as a sink for dissipating excess reducing power, minimizing oxidative stress and possibly optimizing photosynthesis in response to changing conditions. The expression patterns of the AOX genes have been well characterized under different growth conditions, particularly in response to light and temperature stress. Additionally, it has been suggested that mitochondrial electron transport is important for avoiding chloroplast over-reduction and balancing energy partitioning among photosynthesis, photorespiration and respiration. Nonetheless, the role AOX plays in optimizing photosynthetic carbon metabolism is unclear. Therefore, the response of photosynthesis to the disruption of AOX was investigated in the Arabidopsis thaliana T-DNA mutant aox1a (SALK_084897). Gas exchange analysis revealed a lower net CO2 assimilation rate (A) at high CO2 concentrations in the aox1a mutant compared to wild type. This decrease in A was accompanied by a lower maximum electron transport rate and quantum yield of PSII, and higher excitation pressure on PSII and non-photochemical quenching. The aox1a mutant also exhibited a lower estimated rate of ribulose 1,5-bisphosphate regeneration, and the ribulose 1,5-bisphosphate content was lower at high CO2 concentrations, suggesting an ATP limitation of the Calvin–Benson cycle. Additionally, the activity of the malate–oxaloacetate shuttle was lower in the mutant compared to wild type. These results indicate that AOX is important for optimizing rates of photosynthetic CO2 assimilation in response to rising CO2 concentration by balancing the NAD(P)H/ATP ratio and rates of ribulose 1,5-bisphosphate regeneration within the chloroplast.
机译:在高等植物中,线粒体电子传输链具有非磷酸化的替代途径,包括替代末端氧化酶(AOX)。已经提出该替代途径充当消散过量还原能力,最小化氧化应激并且可能响应于变化的条件而优化光合作用的汇。在不同的生长条件下,尤其是对光和温度胁迫的响应,已经很好地表征了AOX基因的表达模式。另外,已经提出线粒体电子运输对于避免叶绿体过度还原和平衡光合作用,光呼吸和呼吸之间的能量分配是重要的。但是,尚不清楚AOX在优化光合碳代谢中所起的作用。因此,在拟南芥T-DNA突变体aox1a(SALK_084897)中研究了光合作用对AOX破坏的响应。气体交换分析表明,与野生型相比,aox1a突变体在高CO 2 浓度下具有较低的净CO 2 同化率(A)。 A的这种降低伴随着较低的最大电子传输速率和PSII的量子产率,以及较高的PSII激发压力和非光化学猝灭。 aox1a突变体还显示出较低的核糖1,5-二磷酸核糖再生速率,而在高CO 2 浓度时,核糖1,5-二磷酸含量较低,表明Calvin–本生循环。另外,与野生型相比,突变体中苹果酸-草酰乙酸盐穿梭的活性较低。这些结果表明,AOX对于通过平衡NAD(P)H / ATP比例和NAD(P)H / ATP的比率来优化CO 2 浓度升高对光合作用CO 2 同化速率具有重要意义。叶绿体中的核糖1,5-二磷酸再生。

著录项

  • 来源
    《Plant and Cell Physiology》 |2012年第9期|p.1627-1637|共11页
  • 作者单位

    1School of Biological Sciences, Molecular Plant Science, Washington State University, Pullman, WA 99164-4236, USA 2Australian Research Council, Centre of Excellence in Plant Energy Biology, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, 5001 South Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号