首页> 美国卫生研究院文献>Nature Communications >Empirical mean-noise fitness landscapes reveal the fitness impact of gene expression noise
【2h】

Empirical mean-noise fitness landscapes reveal the fitness impact of gene expression noise

机译:经验均值适应度景观揭示基因表达噪声的适应性影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effects of cell-to-cell variation (noise) in gene expression have proven difficult to quantify because of the mechanistic coupling of noise to mean expression. To independently quantify the effects of changes in mean expression and noise we determine the fitness landscapes in mean-noise expression space for 33 genes in yeast. For most genes, short-lived (noise) deviations away from the expression optimum are nearly as detrimental as sustained (mean) deviations. Fitness landscapes can be classified by a combination of each gene’s sensitivity to protein shortage or surplus. We use this classification to explore evolutionary scenarios for gene expression and find that certain landscape topologies can break the mechanistic coupling of mean and noise, thus promoting independent optimization of both properties. These results demonstrate that noise is detrimental for many genes and reveal non-trivial consequences of mean-noise-fitness topologies for the evolution of gene expression systems.
机译:事实证明,由于噪声与平均表达的机械耦合,难以量化基因表达中细胞间变化(噪声)的影响。为了独立地量化平均表达和噪声变化的影响,我们确定了酵母中33个基因的平均噪声表达空间的适应度。对于大多数基因,远离表达最优值的短期(噪声)偏差几乎与持续(均值)偏差一样有害。可以根据每种基因对蛋白质短缺或过剩的敏感性进行组合,对健身状况进行分类。我们使用这种分类来探索基因表达的进化方案,并发现某些景观拓扑结构可以打破均值和噪声的机械耦合,从而促进两种特性的独立优化。这些结果表明,噪声对许多基因都是有害的,并揭示了平均噪声适合度拓扑结构对基因表达系统的进化的重要影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号