首页> 美国卫生研究院文献>OMICS : a Journal of Integrative Biology >Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers
【2h】

Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers

机译:发展尿代谢组学特征作为早期膀胱癌的诊断标志

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Early detection is vital to improve the overall survival rate of bladder cancer (BCa) patients, yet there is a lack of a reliable urine-based assay for early detection of BCa. Urine metabolites represented a potential rich source of biomarkers for BCa. This study aimed to develop a metabolomics approach for high coverage discovery and identification of metabolites in urine samples. Urine samples from 23 early stage BCa patients and 21 healthy volunteers with minimum sample preparations were analyzed by a short 30 min UPLC-HRMS method. We detected and quantified over 9000 unique UPLC-HRMS features, which is more than four times than about 2000 features detected in previous urine metabolomic studies. Furthermore, multivariate OPLS-DA classification models were established to differentiate urine samples from bladder cancer cohort and normal health cohort. We identified three BCa-upregulated metabolites: nicotinuric acid, trehalose, AspAspGlyTrp, and three BCa-downregulated metabolites: inosinic acid, ureidosuccinic acid, GlyCysAlaLys. Finally, analysis of six post-surgery BCa urine samples showed that these BCa-metabolomic features reverted to normal state after tumor removal, suggesting that they reflected metabolomic features associated with BCa. ROC analyses using two linear regression models to combine the identified markers showed a high diagnostic performance for detecting BCa with AUC (area under the ROC curve) values of 0.919 to 0.934. In summary, we developed a high coverage metabolomic approach that has potential for biomarker discovery in cancers.
机译:早期检测对于提高膀胱癌(BCa)患者的总体生存率至关重要,但是缺乏可靠的基于尿液的早期检测BCa的检测方法。尿液代谢物代表了BCa生物标志物的潜在丰富来源。这项研究旨在开发一种代谢组学方法,以高覆盖率发现和鉴定尿液样品中的代谢物。用短时间的30分钟UPLC-HRMS方法分析了23例早期BCa患者和21例健康志愿者的尿液样品,这些样品的样品制备最少。我们检测并量化了9000多种独特的UPLC-HRMS功能,这是以前的尿液代谢组学研究中检测到的约2000项功能的四倍以上。此外,建立了多元OPLS-DA分类模型以区分尿液样本与膀胱癌队列和正常健康队列。我们确定了三种BCa上调的代谢产物:烟酸,海藻糖,AspAspGlyTrp和三种BCa下调的代谢产物:肌苷酸,脲基琥珀酸,GlyCysAlaLys。最后,对六个手术后BCa尿液样品的分析表明,这些BCa代谢特征在切除肿瘤后恢复了正常状态,表明它们反映了与BCa相关的代谢组特征。使用两个线性回归模型结合识别出的标记物进行的ROC分析显示出具有0.919至0.934的AUC(ROC曲线下面积)值的BCa检测具有很高的诊断性能。总而言之,我们开发了一种高覆盖率的代谢组学方法,该方法在癌症中发现生物标志物具有潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号