首页> 美国卫生研究院文献>Medical Physics >Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration
【2h】

Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration

机译:超维恶魔:一种在变形图像配准中整合缺失组织的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models.>Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery.>Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD.>Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.
机译:>目的:据报道,一种能够解决缺失组织(例如切除)的可变形配准方法已应用于锥束CT(CBCT)指导的外科手术中。切除是通过与注册过程同时执行的细分步骤来识别的。通过增加变形场的尺寸来明确组织建模,以允许运动超出图像的尺寸。在幻影模型,仿真模型和尸体模型中测试了模型的准确性。>方法:修改了Demons可变形配准算法的一种变体,以包括切除分割和建模。分割是在配准过程中反复执行的,其初始实现是使用基于阈值的方法来识别与运动图像中的“组织”和固定图像中的“空气”相对应的体素。随着恶魔过程的每次迭代,每个体素都被分配了切除的概率。在配准过程中,通过增加变形场的维数来明确建模切除,以便可以分别通过体积内变形和体积外变形来解释变形和切除。每个体素处的变形场的体积外(即第四分量)分量的大小与在切除分割步骤中计算的切除概率成比例。在幻影模型中,在缺少组织的情况下,对拟议的“超维”恶魔(XDD)和常规恶魔方法的配准精度进行了测试,模拟了研究切除尺寸对配准精度的影响,并通过尸体研究模拟了真实的变形和组织>结果:幻影实验显示,切除部位局部的标准化互信息(NMI)从传统的Demons方法的1.10提高到XDD的1.16,对所得图像的定性检查显示出主要差异:传统的Demons方法在组织切除周围的区域产生了不切实际的扭曲,而XDD在切除部位内提供了精确的体素“弹出”,并在其余图像中保持了配准精度。两种方法在离切除部位较远的区域(例如>〜5 mm)的套准精度相同。在NMI分析,归一化互相关(NCC),目标配准误差(TRE)和从体积中喷射出的体素的准确性(真阳性和假阳性分析)中,效果的量化是一致的。发现传统恶魔的配准精度会随着切除尺寸的增加而急剧下降,而XDD在这方面很可靠。尸体研究涉及对锁骨、,管和筛窦的现实切除,显示出相似的结果,传统的恶魔赋予解剖结构不切实际的失真,XDD的射出和变形准确。>结论:适应性强的恶魔可变形包括分割(即,切除组织的识别)和变形场中的额外尺寸在内的配准过程提供了一种在图像采集之间准确容纳缺失组织的方法。超维方法可在切除部位局部产生精确的“射出”体素,同时在其余图像中保留常规“恶魔”方法的配准精度(通常为亚体素)。适应缺失组织体积的能力对于将CBCT应用于外科手术指导(例如颅底钻出)很重要,并且可能在CBCT指导的其他领域也有应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号