首页> 美国卫生研究院文献>Journal of Neurophysiology >Sensory Processing: Functional role of airflow-sensing hairs on the bat wing
【2h】

Sensory Processing: Functional role of airflow-sensing hairs on the bat wing

机译:感觉处理:蝙蝠翼上的气流感应毛发的功能作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The wing membrane of the big brown bat (Eptesicus fuscus) is covered by a sparse grid of microscopic hairs. We showed previously that various tactile receptors (e.g., lanceolate endings and Merkel cell neurite complexes) are associated with wing-hair follicles. Furthermore, we found that depilation of these hairs decreased the maneuverability of bats in flight. In the present study, we investigated whether somatosensory signals arising from the hairs carry information about airflow parameters. Neural responses to calibrated air puffs on the wing were recorded from primary somatosensory cortex of E. fuscus. Single units showed sparse, phasic, and consistently timed spikes that were insensitive to air-puff duration and magnitude. The neurons discriminated airflow from different directions, and a majority responded with highest firing rates to reverse airflow from the trailing toward the leading edge of the dorsal wing. Reverse airflow, caused by vortices, occurs commonly in slowly flying bats. Hence, the present findings suggest that cortical neurons are specialized to monitor reverse airflow, indicating laminar airflow disruption (vorticity) that potentially destabilizes flight and leads to stall.>NEW & NOTEWORTHY Bat wings are adaptive airfoils that enable demanding flight maneuvers. The bat wing is sparsely covered with sensory hairs, and wing-hair removal results in reduced flight maneuverability. Here, we report for the first time single-neuron responses recorded from primary somatosensory cortex to airflow stimulation that varied in amplitude, duration, and direction. The neurons show high sensitivity to the directionality of airflow and might act as stall detectors.
机译:大棕蝙蝠(Eptesicus fuscus)的机翼膜被稀疏的细毛网格覆盖。先前我们证明了各种触觉受体(例如,披针形末端和默克尔细胞神经突复合物)与翼毛囊相关。此外,我们发现这些毛发的脱毛会降低蝙蝠在飞行中的可操纵性。在本研究中,我们调查了由头发引起的体感信号是否携带有关气流参数的信息。记录了从大肠埃希氏菌的初级体感皮层对机翼上标定的吹气的神经反应。单个单位显示出稀疏的,连续的且定时一致的尖峰,对气胀持续时间和幅度不敏感。神经元区分了来自不同方向的气流,并且大多数人以最高的发动速率做出反应,以将气流从尾翼的后缘朝前缘逆转。由涡流引起的反向气流通常发生在缓慢飞行的蝙蝠中。因此,本研究结果表明,皮质神经元专门用于监测反向气流,表明层流气流中断(涡度)可能使飞行不稳定并导致失速。> NEW&NOTEWORTHY 蝙蝠翼是能够满足要求的自适应翼型飞行演习。蝙蝠的机翼稀疏地覆盖着感官毛发,机翼和毛发的去除导致飞行机动性降低。在这里,我们首次报告从初级体感皮层到气流刺激的单神经元反应,其幅度,持续时间和方向均发生变化。神经元对气流的方向性表现出很高的敏感性,并可能充当失速检测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号