首页> 美国卫生研究院文献>Journal of Computational Biology >Hybrid Statistical and Mechanistic Mathematical Model Guides Mobile Health Intervention for Chronic Pain
【2h】

Hybrid Statistical and Mechanistic Mathematical Model Guides Mobile Health Intervention for Chronic Pain

机译:统计和机制混合数学模型指导慢性疼痛的移动健康干预

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Nearly a quarter of visits to the emergency department are for conditions that could have been managed via outpatient treatment; improvements that allow patients to quickly recognize and receive appropriate treatment are crucial. The growing popularity of mobile technology creates new opportunities for real-time adaptive medical intervention, and the simultaneous growth of “big data” sources allows for preparation of personalized recommendations. Here we focus on the reduction of chronic suffering in the sickle cell disease (SCD) community. SCD is a chronic blood disorder in which pain is the most frequent complication. There currently is no standard algorithm or analytical method for real-time adaptive treatment recommendations for pain. Furthermore, current state-of-the-art methods have difficulty in handling continuous-time decision optimization using big data. Facing these challenges, in this study, we aim to develop new mathematical tools for incorporating mobile technology into personalized treatment plans for pain. We present a new hybrid model for the dynamics of subjective pain that consists of a dynamical systems approach using differential equations to predict future pain levels, as well as a statistical approach tying system parameters to patient data (both personal characteristics and medication response history). Pilot testing of our approach suggests that it has significant potential to well predict pain dynamics, given patients reported pain levels and medication usages. With more abundant data, our hybrid approach should allow physicians to make personalized, data-driven recommendations for treating chronic pain.
机译:>将近四分之一的急诊就诊是通过门诊治疗可以解决的疾病;使患者能够快速识别并接受适当治疗的改进至关重要。移动技术的日益普及为实时自适应医疗干预创造了新的机会,而“大数据”源的同步增长允许准备个性化的建议。在这里,我们着重于减少镰状细胞病(SCD)社区的慢性痛苦。 SCD是一种慢性血液病,其中疼痛是最常见的并发症。当前没有用于疼痛的实时自适应治疗建议的标准算法或分析方法。此外,当前的最新方法难以处理使用大数据的连续时间决策优化。面对这些挑战,在本研究中,我们旨在开发新的数学工具,以将移动技术纳入个性化的疼痛治疗计划中。我们提出了一种用于主观疼痛动力学的新混合模型,该模型包括使用微分方程来预测未来疼痛水平的动力学系统方法,以及将系统参数与患者数据(个人特征和药物反应历史)相关联的统计方法。我们的方法的初步测试表明,鉴于患者报告了疼痛水平和药物使用情况,该方法具有很好的预测疼痛动态的巨大潜力。有了更丰富的数据,我们的混合方法应可使医生提出以数据为依据的个性化建议,以治疗慢性疼痛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号