首页> 美国卫生研究院文献>The International Journal of Biostatistics >A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators
【2h】

A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators

机译:基于数据自适应对模型的倾向得分估计对三个逆概率加权估计的因果推断影响的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ObjectiveConsistent estimation of causal effects with inverse probability weighting estimators is known to rely on consistent estimation of propensity scores. To alleviate the bias expected from incorrect model specification for these nuisance parameters in observational studies, data-adaptive estimation and in particular an ensemble learning approach known as Super Learning has been proposed as an alternative to the common practice of estimation based on arbitrary model specification. While the theoretical arguments against the use of the latter haphazard estimation strategy are evident, the extent to which data-adaptive estimation can improve inferences in practice is not. Some practitioners may view bias concerns over arbitrary parametric assumptions as academic considerations that are inconsequential in practice. They may also be wary of data-adaptive estimation of the propensity scores for fear of greatly increasing estimation variability due to extreme weight values. With this report, we aim to contribute to the understanding of the potential practical consequences of the choice of estimation strategy for the propensity scores in real-world comparative effectiveness research.
机译:目的已知使用逆概率加权估计器对因果关系进行一致估计是依赖于倾向得分的一致估计。为了减轻观察研究中这些烦人参数的不正确模型规格所带来的偏差,已经提出了数据自适应估计,特别是称为超级学习的整体学习方法,作为基于任意模型规格的常见估计方法的替代方法。虽然反对使用后一种随机性估计策略的理论观点很明显,但数据自适应估计可以在实践中改善推断的程度尚不明确。一些从业者可能将对任意参数假设的偏见视为实践中无关紧要的学术考虑。他们还可能会担心倾向得分的数据自适应估计,因为担心由于极端权重值而导致的估计变异性会大大增加。借助本报告,我们的目的是有助于理解现实世界中比较有效性研究中倾向得分的估计策略选择的潜在实际后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号