首页> 美国卫生研究院文献>Bioinformatics >Optimal design of gene knockout experiments for gene regulatory network inference
【2h】

Optimal design of gene knockout experiments for gene regulatory network inference

机译:基因调控网络推断的基因敲除实验的优化设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: We addressed the problem of inferring gene regulatory network (GRN) from gene expression data of knockout (KO) experiments. This inference is known to be underdetermined and the GRN is not identifiable from data. Past studies have shown that suboptimal design of experiments (DOE) contributes significantly to the identifiability issue of biological networks, including GRNs. However, optimizing DOE has received much less attention than developing methods for GRN inference.>Results: We developed REDuction of UnCertain Edges (REDUCE) algorithm for finding the optimal gene KO experiment for inferring directed graphs (digraphs) of GRNs. REDUCE employed ensemble inference to define uncertain gene interactions that could not be verified by prior data. The optimal experiment corresponds to the maximum number of uncertain interactions that could be verified by the resulting data. For this purpose, we introduced the concept of edge separatoid which gave a list of nodes (genes) that upon their removal would allow the verification of a particular gene interaction. Finally, we proposed a procedure that iterates over performing KO experiments, ensemble update and optimal DOE. The case studies including the inference of Escherichia coli GRN and DREAM 4 100-gene GRNs, demonstrated the efficacy of the iterative GRN inference. In comparison to systematic KOs, REDUCE could provide much higher information return per gene KO experiment and consequently more accurate GRN estimates.>Conclusions: REDUCE represents an enabling tool for tackling the underdetermined GRN inference. Along with advances in gene deletion and automation technology, the iterative procedure brings an efficient and fully automated GRN inference closer to reality.>Availability and implementation: MATLAB and Python scripts of REDUCE are available on .>Contact: >Supplementary information: are available at Bioinformatics online.
机译:>动机:我们解决了从基因敲除(KO)实验的基因表达数据推断基因调控网络(GRN)的问题。已知该推断尚不确定,并且无法从数据中识别出GRN。过去的研究表明,次优实验设计(DOE)对包括GRN在内的生物网络的可识别性问题做出了重大贡献。但是,优化DOE比开发GRN推理的方法受到的关注要少得多。>结果:我们开发了不确定边缘的REDuction(REDUCE)算法,以找到用于推导有向图(图)的最佳基因KO实验。 GRN。 REDUCE采用集成推理来定义不确定的基因相互作用,而先前的数据无法对其进行验证。最佳实验对应于可以由结果数据验证的最大不确定性相互作用数。为此,我们引入了边缘分离的概念,该概念给出了节点(基因)的列表,这些节点在去除后将允许验证特定的基因相互作用。最后,我们提出了在执行KO实验,整体更新和最佳DOE时进行迭代的过程。案例研究包括大肠杆菌GRN和DREAM 4-100基因GRN的推论,证明了迭代GRN推论的有效性。与系统的KO相比,REDUCE可以为每个基因KO实验提供更高的信息回报,因此可以提供更准确的GRN估算值。>结论: REDUCE是解决不确定的GRN推论的一种启用工具。随着基因缺失和自动化技术的进步,迭代过程使高效且全自动的GRN推断更接近于现实。>可用性和实现:REDUCE的MATLAB和Python脚本可在。>联系: >补充信息:可从在线生物信息学获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号