首页> 美国卫生研究院文献>Bioinformatics >Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways
【2h】

Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

机译:时限网络中的影响最大化可识别调节扰动途径的转录因子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension.>Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in >TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway.>Availability and Implementation: TimeTP is implemented in Python and available at .>Supplementary information: are available at Bioinformatics online.>Contact:
机译:>动机:要了解生物过程的动态性质,至关重要的是确定变化环境中的扰动途径,并推断触发该反应的调节剂。但是,当前的时间序列分析方法功能不足以同时识别扰动的路径和调节器。广泛使用的方法包括确定基因组的方法,例如差异表达的基因或基因簇,并且这些基因组需要使用其他工具从生物学途径的角度进行进一步解释。大多数途径分析方法都不是为时间序列数据设计的,并且它们没有考虑基因-基因对时间维度的影响。>结果:在本文中,我们提出了一种新颖的时间序列分析方法TimeTP来确定转录因子(TFs)调节通路的扰动,从而将焦点缩小到受扰动的子通路,并利用基因调节网络和蛋白质-蛋白质相互作用网络来定位引发扰动的TF。 TimeTP首先识别随时间传播表达式变化的受干扰子路径。扰动子路径的起点被映射到网络中,并且影响最大的TF通过影响最大化技术确定。分析结果在>时间时钟的TF-路径图中中直观地汇总。将TimeTP应用于PIK3CA敲入数据集,并发现了重要的子路径及其与PIP3信号通路相关的调节剂。>可用性和实现:TimeTP是用Python实现的,可通过以下网址获取。>补充信息:可在生物信息学在线获得。>联系方式:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号