首页> 美国卫生研究院文献>American Journal of Epidemiology >Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data
【2h】

Inverse-Probability-Weighted Estimation for Monotone and Nonmonotone Missing Data

机译:单调和非单调缺失数据的逆概率加权估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Missing data is a common occurrence in epidemiologic research. In this paper, 3 data sets with induced missing values from the Collaborative Perinatal Project, a multisite US study conducted from 1959 to 1974, are provided as examples of prototypical epidemiologic studies with missing data. Our goal was to estimate the association of maternal smoking behavior with spontaneous abortion while adjusting for numerous confounders. At the same time, we did not necessarily wish to evaluate the joint distribution among potentially unobserved covariates, which is seldom the subject of substantive scientific interest. The inverse probability weighting (IPW) approach preserves the semiparametric structure of the underlying model of substantive interest and clearly separates the model of substantive interest from the model used to account for the missing data. However, IPW often will not result in valid inference if the missing-data pattern is nonmonotone, even if the data are missing at random. We describe a recently proposed approach to modeling nonmonotone missing-data mechanisms under missingness at random to use in constructing the weights in IPW complete-case estimation, and we illustrate the approach using 3 data sets described in a companion article (Am J Epidemiol. 2018;187(3):568–575).
机译:数据丢失是流行病学研究中的常见现象。在本文中,提供了1959年至1974年在美国进行的一项多地点研究-协作围产期项目中3个具有诱发缺失值的数据集,作为具有缺失数据的典型流行病学研究的示例。我们的目标是在调整众多混杂因素的同时,评估孕妇吸烟行为与自然流产的关系。同时,我们不一定希望评估潜在未观察到的协变量之间的联合分布,这很少是具有实质科学意义的主题。逆概率加权(IPW)方法保留了实质性利益基础模型的半参数结构,并将实质性利益模型与用于说明缺失数据的模型清楚地分开了。但是,即使数据是随机丢失的,如果丢失数据模式是非单调的,IPW通常也不会导致有效的推断。我们描述了一种最近提出的在随机缺失下对非单调缺失数据机制进行建模的方法,以用于构建IPW完整案例估计中的权重,并且我们使用随附文章中描述的3个数据集来说明该方法(Am J Epidemiol.2018 ; 187(3):568-575)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号