首页> 美国卫生研究院文献>American Journal of Epidemiology >Efficient Estimation of Smooth Distributions From Coarsely Grouped Data
【2h】

Efficient Estimation of Smooth Distributions From Coarsely Grouped Data

机译:从粗分组数据有效估计平滑分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age group–specific disease incidence rates and abridged life tables are examples of binned data. We propose a versatile method for ungrouping histograms that assumes that only the underlying distribution is smooth. Because of this modest assumption, the approach is suitable for most applications. The method is based on the composite link model, with a penalty added to ensure the smoothness of the target distribution. Estimates are obtained by maximizing a penalized likelihood. This maximization is performed efficiently by a version of the iteratively reweighted least-squares algorithm. Optimal values of the smoothing parameter are chosen by minimizing Akaike's Information Criterion. We demonstrate the performance of this method in a simulation study and provide several examples that illustrate the approach. Wide, open-ended intervals can be handled properly. The method can be extended to the estimation of rates when both the event counts and the exposures to risk are grouped.
机译:由于许多原因,可能需要对合并的数据进行分组:合并可能太粗糙而无法进行准确的分析;当在不同的直方图中使用不同的分组方法时,比较会受到阻碍;最后一个间隔通常是宽且开放的,因此在尾部区域涵盖了很多信息。特定年龄组的疾病发病率和缩短的生命表就是分类数据的示例。我们提出了一种用于取消直方图分组的通用方法,该方法假定仅基础分布是平滑的。由于这种适度的假设,该方法适用于大多数应用。该方法基于复合链接模型,并添加了惩罚以确保目标分布的平滑性。通过最大化受罚可能性来获得估计。通过迭代重新加权的最小二乘算法的一个版本可以有效地执行此最大化。通过最小化Akaike的信息准则来选择平滑参数的最佳值。我们在仿真研究中演示了该方法的性能,并提供了一些示例来说明该方法。宽范围的开放式间隔可以正确处理。当事件计数和风险暴露都被分组时,该方法可以扩展到比率的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号