首页> 美国卫生研究院文献>Advances in Bioinformatics >Correction of Spatial Bias in Oligonucleotide Array Data
【2h】

Correction of Spatial Bias in Oligonucleotide Array Data

机译:校正寡核苷酸阵列数据中的空间偏差。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background. Oligonucleotide microarrays allow for high-throughput gene expression profiling assays. The technology relies on the fundamental assumption that observed hybridization signal intensities (HSIs) for each intended target, on average, correlate with their target's true concentration in the sample. However, systematic, nonbiological variation from several sources undermines this hypothesis. Background hybridization signal has been previously identified as one such important source, one manifestation of which appears in the form of spatial autocorrelation. Results. We propose an algorithm, pyn, for the elimination of spatial autocorrelation in HSIs, exploiting the duality of desirable mutual information shared by probes in a common probe set and undesirable mutual information shared by spatially proximate probes. We show that this correction procedure reduces spatial autocorrelation in HSIs; increases HSI reproducibility across replicate arrays; increases differentially expressed gene detection power; and performs better than previously published methods. Conclusions. The proposed algorithm increases both precision and accuracy, while requiring virtually no changes to users' current analysis pipelines: the correction consists merely of a transformation of raw HSIs (e.g., CEL files for Affymetrix arrays). A free, open-source implementation is provided as an R package, compatible with standard Bioconductor tools. The approach may also be tailored to other platform types and other sources of bias.
机译:背景。寡核苷酸微阵列可用于高通量基因表达谱分析。该技术基于以下基本假设:每个目标目标的观察到的杂交信号强度(HSI)平均都与其目标样品在样品中的真实浓度相关。但是,来自多个来源的系统的,非生物学的变异破坏了这一假设。先前已经将背景杂交信号鉴定为一种这样的重要来源,其一种表现形式是以空间自相关的形式出现的。结果。我们提出了一种算法pyn,用于消除HSI中的空间自相关,该算法利用了公共探针集中的探针共享的理想互信息和空间邻近探针共享的不良互信息的对偶性。我们表明,这种校正程序减少了HSI中的空间自相关;提高跨复制阵列的HSI重现性;增加差异表达基因的检测能力;并且比以前发布的方法执行得更好。结论。提出的算法提高了精度和准确性,同时几乎不需要更改用户当前的分析管道:校正仅包括原始HSI的转换(例如Affymetrix阵列的CEL文件)。作为R包提供了免费的开源实现,与标准的Bioconductor工具兼容。该方法也可以适合于其他平台类型和其他偏差来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号