首页> 美国卫生研究院文献>Antibodies >OptMAVEn-2.0: De novo Design of Variable Antibody Regions against Targeted Antigen Epitopes
【2h】

OptMAVEn-2.0: De novo Design of Variable Antibody Regions against Targeted Antigen Epitopes

机译:OptMAVEn-2.0:针对靶向抗原表位的可变抗体区域的从头设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monoclonal antibodies are becoming increasingly important therapeutic agents for the treatment of cancers, infectious diseases, and autoimmune disorders. However, laboratory-based methods of developing therapeutic monoclonal antibodies (e.g., immunized mice, hybridomas, and phage display) are time-consuming and are often unable to target a specific antigen epitope or reach (sub)nanomolar levels of affinity. To this end, we developed Optimal Method for Antibody Variable region Engineering (OptMAVEn) for de novo design of humanized monoclonal antibody variable regions targeting a specific antigen epitope. In this work, we introduce OptMAVEn-2.0, which improves upon OptMAVEn by (1) reducing computational resource requirements without compromising design quality; (2) clustering the designs to better identify high-affinity antibodies; and (3) eliminating intra-antibody steric clashes using an updated set of clashing parts from the Modular Antibody Parts (MAPs) database. Benchmarking on a set of 10 antigens revealed that OptMAVEn-2.0 uses an average of 74% less CPU time and 84% less disk storage relative to OptMAVEn. Testing on 54 additional antigens revealed that computational resource requirements of OptMAVEn-2.0 scale only sub-linearly with respect to antigen size. OptMAVEn-2.0 was used to design and rank variable antibody fragments targeting five epitopes of Zika envelope protein and three of hen egg white lysozyme. Among the top five ranked designs for each epitope, recovery of native residue identities is typically 45–65%. MD simulations of two designs targeting Zika suggest that at least one would bind with high affinity. OptMAVEn-2.0 can be downloaded from our GitHub repository and webpage as (links in Summary and Discussion section).
机译:单克隆抗体正成为治疗癌症,传染病和自身免疫性疾病的越来越重要的治疗剂。然而,开发治疗性单克隆抗体的基于实验室的方法(例如,免疫小鼠,杂交瘤和噬菌体展示)是费时的,并且通常不能靶向特定抗原表位或达到(亚)纳摩尔水平的亲和力。为此,我们开发了抗体可变区工程的最佳方法(OptMAVEn),用于从头设计靶向特定抗原表位的人源化单克隆抗体可变区。在这项工作中,我们介绍OptMAVEn-2.0,它通过以下方式对OptMAVEn进行了改进:(1)在不损害设计质量的前提下减少了计算资源需求; (2)将设计聚类以更好地识别高亲和力抗体; (3)使用来自模块化抗体零件(MAP)数据库的一组更新的碰撞零件来消除抗体内部空间碰撞。对一组10种抗原进行基准测试发现,与OptMAVEn相比,OptMAVEn-2.0平均减少了74%的CPU时间和84%的磁盘存储量。对54种其他抗原的测试表明,OptMAVEn-2.0的计算资源要求仅相对于抗原大小亚线性扩展。 OptMAVEn-2.0用于设计和排列可变抗体片段,这些片段针对Zika包膜蛋白的五个表位和三个鸡蛋清溶菌酶。在每个表位排名前五的设计中,天然残基身份的回收率通常为45%至65%。针对Zika的两种设计的MD模拟表明,至少有一种可以高亲和力结合。 OptMAVEn-2.0可以从我们的GitHub存储库和网页下载(摘要和讨论部分中的链接)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号