首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus
【2h】

Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus

机译:嗜热古细菌Ferroglobus placidus对苯的厌氧氧化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]benzene to [14C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [14C]benzoate was produced from [14C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
机译:为了研究在稳定的厌氧条件下如何稳定地代谢这种稳定分子,研究了在铁球菌中研究了厌氧苯氧化与还原Fe(III)的关系。 F. placidus保留能量以支持在85°C的培养基中以苯为唯一电子供体,Fe(III)为唯一电子受体的培养基中的生长。苯损失和Fe(III)还原的化学计量以及[ 14 C]苯向[ 14 C]二​​氧化碳的转化均与完全氧化一致苯转化为二氧化碳,并通过电子转移到三价铁。在苯代谢过程中,苯甲酸酯(而非苯酚或甲苯)积累的水平很低,并且[ 14 C]苯生成了[ 14 C]苯甲酸酯。基因转录水平的分析显示,与苯乙酸盐生长相比,苯生长期间厌氧苯甲酸盐降解酶的编码酶基因表达增加,但苯生长期间与酚降解有关的基因并未上调。确定了一个假定的羧化酶基因,该基因在苯中比在苯甲酸盐生长的细胞中表达更高。这些结果表明,苯被羧化为苯甲酸酯,并且苯酚不是聚乳酸镰刀菌苯代谢中的重要中间体。这是纯培养物中微生物的首次展示,该微生物可以在严格的厌氧条件下在苯上生长,并且有充分的证据表明苯可以通过明确定义的厌氧代谢途径降解。因此,F。placidus提供了急需的纯培养模型,用于进一步研究微生物中苯的厌氧活化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号