首页> 美国卫生研究院文献>Stem Cell Reports >Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells
【2h】

Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells

机译:miR-375对人脂肪间充质干细胞成骨分化的促进作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionTissue engineering technology has become one of the most prospective therapeutic approaches for bone regeneration in bone defects (, ). As a type of adult mesenchymal stem cells (MSCs), human adipose-derived mesenchymal stem cells (hASCs) are capable of self-renewal and differentiation into cells such as osteoblasts, chondrocytes, and adipocytes (). Because they can be obtained from adipose tissue in abundance by means of a minimally invasive procedure, hASCs are a valuable source of adult MSCs for bone tissue engineering and bone regeneration (). Therefore, how to effectively promote the osteogenic differentiation of hASCs has become dramatically important in bone tissue engineering.MicroRNAs (miRNAs) are a class of endogenously small non-coding RNAs that function as post-transcriptional regulators through binding to complementary sites on target mRNAs (). Evolutionary conserved, miRNAs have been implicated in various biological processes, including the cell fate of embryonic stem cells, cell proliferation, apoptosis, differentiation, and carcinogenesis (, , ). A number of miRNAs participate in the osteogenic differentiation of MSCs, such as miR-21 (), miR-31 (), miR-34a (), and miR-196a (). Targeting miRNAs as a therapeutic approach has shed light on bone tissue regeneration, but the mechanism of their regulation of osteogenesis in MSCs remains to be determined ().microRNA-375 (miR-375) was identified early as a pancreatic islet-specific miRNA regulating insulin secretion (). Subsequent studies revealed that miR-375 participated in multiple biological processes, including glucose homeostasis, mucosal immunity, and cancer development (, href="#bib10" rid="bib10" class=" bibr popnode">EI Ouaamari et al., 2008, href="#bib50" rid="bib50" class=" bibr popnode">Yan et al., 2014). Moreover, miR-375 is significantly downregulated in several types of tumors, and suppresses their proliferation by targeting some important genes, e.g., JAK2, YAP1, and PDK1 (href="#bib8" rid="bib8" class=" bibr popnode">Ding et al., 2010, href="#bib52" rid="bib52" class=" bibr popnode">Zhang et al., 2013, href="#bib55" rid="bib55" class=" bibr popnode">Zhou et al., 2014). Research has shown that miR-375 is a negative regulator of adipogenic differentiation by targeting bone morphogenetic protein receptor 2 (BMPR2) (href="#bib29" rid="bib29" class=" bibr popnode">Liu et al., 2016a). Osteoblastic and adipocytic lineages have alternative fates during development and aging, and increased adipogenesis correlates with decreased osteogenesis (href="#bib46" rid="bib46" class=" bibr popnode">Takada et al., 2009, href="#bib48" rid="bib48" class=" bibr popnode">Verma et al., 2002), which led us to speculate that miR-375 might play a role in the differentiation of stem cells toward osteogenic lineage.Osteogenic differentiation is a complex process governed by interplay of several signaling pathways (href="#bib35" rid="bib35" class=" bibr popnode">Novack, 2011, href="#bib39" rid="bib39" class=" bibr popnode">Salazar et al., 2016). Phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and Hippo are two major pathways involved in the regulation of cell proliferation and differentiation (href="#bib16" rid="bib16" class=" bibr popnode">Hansen et al., 2015a, href="#bib25" rid="bib25" class=" bibr popnode">Laplante and Sabatini, 2012). Crosstalk between the two pathways plays a significant role in regulating cell proliferation and differentiation (href="#bib17" rid="bib17" class=" bibr popnode">Hansen et al., 2015b, href="#bib43" rid="bib43" class=" bibr popnode">Shimobayashi and Hall, 2014). The PI3K/AKT/mTOR pathway governs a variety of cellular and molecular responses by regulating protein synthesis (href="#bib7" rid="bib7" class=" bibr popnode">Dibble and Cantley, 2015). Perturbation of this pathway contributes to the maintenance of bone homeostasis and MSC lineage differentiation (href="#bib32" rid="bib32" class=" bibr popnode">Martin et al., 2015). The Hippo pathway plays a crucial role in organ-size control by modulating cell proliferation and apoptosis (href="#bib54" rid="bib54" class=" bibr popnode">Zhao et al., 2011). Yes-associated protein 1 (YAP1), major downstream effector of the Hippo pathway, inhibits the osteogenic differentiation of bone marrow-derived MSCs (BMSCs) (href="#bib41" rid="bib41" class=" bibr popnode">Sen et al., 2015, href="#bib42" rid="bib42" class=" bibr popnode">Seo et al., 2013). In this study, we evaluated the effects of miR-375 in hASC osteogenesis and demonstrated that miR-375 promoted the osteogenic differentiation of hASCs via a YAP1/DEPTOR/AKT regulatory network, suggesting its potential utility in hASC-based bone tissue engineering.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介组织工程技术已成为骨缺损中骨再生最有前途的治疗方法之一(,)。作为成人间充质干细胞(MSC)的一种,人脂肪来源的间充质干细胞(hASC)能够自我更新并分化为成骨细胞,软骨细胞和脂肪细胞等细胞。因为它们可以通过微创程序从脂肪组织中大量获取,所以hASCs是用于骨骼组织工程和骨骼再生的成年MSC的宝贵来源()。因此,如何有效促进hASC的成骨分化在骨组织工程中已变得至关重要.MicroRNA(miRNA)是一类内源性的小非编码RNA,通过与靶mRNA的互补位点结合而充当转录后调节子( )。进化保守的miRNA与多种生物学过程有关,包括胚胎干细胞的细胞命运,细胞增殖,凋亡,分化和致癌作用(,)。许多miRNA参与MSC的成骨分化,例如miR-21(),miR-31(),miR-34a()和miR-196a()。以miRNA为靶点的治疗方法为骨组织再生提供了线索,但在MSC中调节其成骨作用的机制尚待确定().microRNA-375(miR-375)早期被确定为胰岛特异性miRNA调节胰岛素分泌()。随后的研究表明,miR-375参与了多个生物过程,包括葡萄糖稳态,粘膜免疫力和癌症发展(,href="#bib10" rid="bib10" class=" bibr popnode"> EI Ouaamari等。 ,2008 ,href="#bib50" rid="bib50" class=" bibr popnode"> Yan等人,2014 )。而且,miR-375在几种类型的肿瘤中均显着下调,并通过靶向某些重要基因(例如JAK2,YAP1和PDK1)来抑制其增殖(href =“#bib8” rid =“ bib8” class =“ bibr popnode“>丁等,2010 ,href="#bib52" rid="bib52" class=" bibr popnode">张等,2013 ,href =” #bib55“ rid =” bib55“ class =” bibr popnode“> Zhou等人,2014 )。研究表明,miR-375通过靶向骨形态发生蛋白受体2(BMPR2),是脂肪形成分化的负调节剂(href="#bib29" rid="bib29" class=" bibr popnode"> Liu等, 2016a )。成骨细胞和脂肪细胞谱系在发育和衰老过程中具有替代命运,脂肪形成增加与成骨减少有关(href="#bib46" rid="bib46" class=" bibr popnode"> Takada等,2009 ,href="#bib48" rid="bib48" class=" bibr popnode"> Verma等,2002 ),这使我们推测miR-375可能在造骨分化是一个复杂的过程,受多个信号传导途径的相互作用控制(href="#bib35" rid="bib35" class=" bibr popnode"> Novack,2011 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Salazar等人,2016 )。磷脂酰肌醇3-激酶(PI3K)/ AKT /哺乳动物雷帕霉素靶标(mTOR)和河马是调控细胞增殖和分化的两个主要途径(href =“#bib16” rid =“ bib16” class =“ bibr popnode“> Hansen等人,2015a ,href="#bib25" rid="bib25" class=" bibr popnode"> Laplante and Sabatini,2012 )。两种途径之间的串扰在调节细胞增殖和分化中起着重要作用(href="#bib17" rid="bib17" class=" bibr popnode"> Hansen等人,2015b ,href =“#bib43” rid =“ bib43” class =“ bibr popnode”> Shimobayashi and Hall,2014 )。 PI3K / AKT / mTOR途径通过调节蛋白质合成来控制多种细胞和分子应答(href="#bib7" rid="bib7" class=" bibr popnode"> Dibble和Cantley,2015 ) 。该途径的干扰有助于维持骨稳态和MSC分化(href="#bib32" rid="bib32" class=" bibr popnode"> Martin等人,2015 )。 Hippo途径通过调节细胞增殖和凋亡在器官大小控制中起着至关重要的作用(href="#bib54" rid="bib54" class=" bibr popnode"> Zhao等人,2011 ) 。 Yes-associated protein 1(YAP1)是Hippo通路的主要下游效应物,可抑制骨髓源性MSC(BMSC)的成骨分化(href =“#bib41” rid =“ bib41” class =“ bibr popnode” > Sen等人,2015 ,href="#bib42" rid="bib42" class=" bibr popnode"> Seo等人,2013 )。在这个研究中,我们评估了miR-375在hASC成骨中的作用,并证明了miR-375通过YAP1 / DEPTOR / AKT调节网络促进了hASC的成骨分化,表明其在基于hASC的骨组织工程中的潜在用途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号