首页> 美国卫生研究院文献>Stem Cell Reports >Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space
【2h】

Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space

机译:移植到兔视网膜下空间后维持在聚酯基质上极化的RPE单层中生长的人类RPE干细胞

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe retinal pigment epithelium (RPE) is a cellular monolayer between the retina and the underlying choroidal vasculature. The RPE participates actively in the visual process, notably by supporting the diurnal replenishment of the photoreceptors (). RPE dysfunction significantly contributes to the pathophysiology of age-related macular degeneration (AMD), a leading cause of blindness (). There are currently no disease-altering therapies available for the vast majority (over 85%) of AMD patients that suffer from the dry form of the disease, which is characterized by extracellular deposits termed drusen beneath the RPE and subsequent RPE atrophy in the macula. The remaining approximately 15% of patients have wet AMD, in which neovascularization invades from the choroid; for these patients, repeated intravitreal injections with antiangiogenic drugs offer a highly effective, albeit palliative, treatment (). Replacement of dysfunctional submacular RPE with a cell-based therapeutic agent represents a potentially curative treatment strategy (). Some previous attempts in patients have been shown to improve vision, but most were limited by immune reactions, surgical complications, late-stage disease, or lack of an adequate RPE cell source (). Translocation of an autologous patch of RPE/choroid remains clinically the most popular approach, because some patients benefit from the procedure, despite its high complication rates ().With the development of RPE differentiation protocols from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) (), RPE transplantation has experienced a powerful renaissance, as scientists and clinicians envision an unlimited supply of RPE for transplantation. However, much is still not understood with regard to the physiology of stem-cell-derived RPE () and transplantation into patients is in the early stages. Pilot data from a phase I/II trial ( and ) with a suspension of hESC-derived RPE injected in patients with dry AMD or Stargardt’s disease suggest a favorable safety profile and some limited improvement in vision (); further dose-escalation in this multicenter study is on-going. This is encouraging, given that prior studies using RPE cell suspensions showed they failed to survive or function on aged submacular Bruch’s membrane () and are more likely to be rejected than are RPE monolayers ().A cultured human RPE monolayer that exhibits the physiology of its native counterpart could be a valuable alternative to an RPE-cell suspension. This type of culture has been readily attained using fetal- or pluripotent-stem-cell-derived RPE. However, establishing such cultures from adult RPE has proven difficult and inconsistent, due to its propensity to undergo epithelial-mesenchymal transition (reviewed in ). We have optimized culture conditions that robustly activate a subpopulation of adult human RPE stem cells (RPESC), expand, and then differentiate them into highly pure RPE monolayers that exhibit physiological features of native RPE (). This protocol allows us to explore the potential of adult RPESC-derived RPE for cell-replacement therapy. To date, we do not know which cell source will turn out to be therapeutically successful, and therefore, testing all potential candidates is important. Using a cell source derived from the adult human RPE may possess several potential advantages, such as fewer ethical concerns compared to hESC and fetal human RPE (hRPE), the possibility of routine histocompatibility leukocyte antigen matching or even autologous transplantation (using a patient’s own remaining healthy RPESCs) to minimize immunosuppression, reduced proliferative potential than hESCs or human iPSCs and therefore reduced tumorigenesis risk, and reduced threat of generating abnormal cell types.RPE monolayers grown on cell carriers would facilitate surgical handling and long-term functionality by substituting some or all of the functions of the aged Bruch’s membrane (href="#bib3" rid="bib3" class=" bibr popnode">Binder et al., 2007). Coimplantation of differentiated RPE monolayers on a substrate has been attempted in animal models only in a few instances and with limited success (href="#bib2" rid="bib2 bib11 bib31" class=" bibr popnode">Bhatt et al., 1994; Diniz et al., 2013; Nicolini et al., 2000). Improvements would involve employing a biocompatible matrix that exhibits minimal deformation after transplantation, longer-term assessment postsurgery, and use of a large-eyed animal model for better assessment of surgical technique.We have previously reported on a method and instrumentation to deliver ultrathin rigid-elastic cell carriers (polyester [PET]) into the subretinal space (SRS) of rabbits (href="#bib42" rid="bib42" class=" bibr popnode">Stanzel et al., 2012). Here, we demonstrate this technology can be used to deliver monolayers of human RPE on permeable polyester carriers into the SRS of the rabbit. Notably, we find RPE isolated from adult cadaver donors can expand 20-fold and survive as a polarized RPE monolayer for 1 month after transplantation, therefore representing a clinically relevant RPE cell source. Transplants were followed with state-of-the-art ophthalmic imaging technology, including spectral domain optical coherence tomography (SD-OCT), confocal scanning-laser ophthalmoscopy (cSLO), color funduscopic photography, and histology. In addition, the influence of local and systemic immunosuppression on retinal tissue alterations following xenografting was evaluated.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介视网膜色素上皮(RPE)是视网膜和基础脉络膜之间的细胞单层脉管系统。 RPE积极参与视觉过程,特别是通过支持感光体的昼夜补充()。 RPE功能障碍是导致年龄相关性黄斑变性(AMD)(失明的主要原因)的病理生理因素。当前,对于绝大多数(超过85%)患有干性疾病的AMD患者,尚无改变疾病的疗法,其特征是在RPE下方被称为玻璃膜疣的细胞外沉积物,随后在黄斑中出现RPE萎缩。其余约15%的患者患有湿性AMD,其中脉络膜侵入了新血管。对于这些患者,玻璃体腔内反复注射抗血管生成药物可提供高效,尽管是姑息治疗()。用基于细胞的治疗剂替代功能异常的黄斑下RPE代表了一种潜在的治疗策略。已显示患者先前的一些尝试可以改善视力,但大多数尝试受到免疫反应,手术并发症,晚期疾病或缺乏适当的RPE细胞来源的限制()。 RPE /脉络膜自体贴剂的移位仍然是临床上最受欢迎的方法,因为尽管并发症发生率很高,但仍有部分患者受益于该手术(R人类人类胚胎干细胞(hESCs)的RPE分化协议的发展和诱导的多能性)干细胞(iPSC)(),RPE移植经历了强大的复兴,因为科学家和临床医生预想了RPE的无限供应。但是,关于干细胞来源的RPE()的生理机制仍知之甚少,并且移植到患者中尚处于早期阶段。来自I / II期试验(和)的试验数据表明,在干燥的AMD或Stargardt病患者中注射了hESC衍生的RPE悬浮液,显示出良好的安全性和视力改善有限();这项多中心研究的进一步剂量递增正在进行中。令人鼓舞的是,以前使用RPE细胞悬液进行的研究表明,它们在RAP单层膜()上无法存活或在老化的黄斑膜下(Bruch's)膜上存活或发挥作用,并且更可能被排斥。它的天然替代物可能是RPE细胞悬浮液的有价值的替代品。使用胎儿或多能干细胞衍生的RPE可以轻松实现这种培养。但是,由于成年RPE倾向于上皮-间充质转化,因此从成人RPE建立这样的文化已被证明是困难且不一致的。我们已经优化了培养条件,可以稳定地激活成人RPE干细胞(RPESC)的亚群,进行扩增,然后将它们分化为具有天然RPE生理特性的高纯度RPE单层。该协议使我们能够探索成人RPESC衍生的RPE在细胞置换治疗中的潜力。迄今为止,我们还不知道哪种细胞来源将在治疗上取得成功,因此测试所有潜在的候选者非常重要。使用源自成年人类RPE的细胞来源可能具有几个潜在的优势,例如与hESC和胎儿人类RPE(hRPE)相比,在伦理方面的关注更少,有可能进行常规组织相容性白细胞抗原匹配甚至自体移植(使用患者自身剩余的健康的RPESCs)可以最大程度地降低免疫抑制作用,比hESCs或人类iPSCs减少增殖潜力,从而降低肿瘤发生的风险,并减少产生异常细胞类型的威胁。在细胞载体上生长的RPE单层通过取代部分或全部可以促进手术操作和长期功能布鲁赫膜的功能的变化(href="#bib3" rid="bib3" class=" bibr popnode"> Binder等人,2007 )。仅在少数情况下才尝试在动物模型中将分化的RPE单层共植入基质,但成功率有限(href="#bib2" rid="bib2 bib11 bib31" class=" bibr popnode"> Bhatt等。 ,1994; Diniz等,2013; Nicolini等,2000 。改进将涉及使用生物相容性基质,该基质在移植后表现出最小的变形,长期评估术后,并且使用大眼动物模型来更好地评估手术技术。我们之前已经报道过一种将超薄刚性弹性细胞载体(聚酯[PET])输送到兔视网膜下间隙(SRS)中的方法和仪器( href="#bib42" rid="bib42" class=" bibr popnode"> Stanzel等人,2012 )。在这里,我们证明了该技术可用于将可渗透聚酯载体上的人RPE单层递送到兔的SRS中。值得注意的是,我们发现从成年尸体供体中分离出的RPE可以扩展20倍,并且可以作为极化的RPE单层在移植后1个月内存活,因此代表了临床相关的RPE细胞来源。移植后采用了最先进的眼科成像技术,包括光谱域光学相干断层扫描(SD-OCT),共焦扫描激光检眼镜(cSLO),彩色眼底照相术和组织学。此外,评估了异种移植后局部和全身免疫抑制对视网膜组织改变的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号