首页> 美国卫生研究院文献>The Journal of Neuroscience >Regulation of Secretory Protein Expression in Mature Cells by DIMM a Basic Helix–Loop–Helix Neuroendocrine Differentiation Factor
【2h】

Regulation of Secretory Protein Expression in Mature Cells by DIMM a Basic Helix–Loop–Helix Neuroendocrine Differentiation Factor

机译:DIMM一种基本的螺旋-环状-螺旋神经内分泌分化因子对成熟细胞分泌蛋白表达的调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During differentiation, neuroendocrine cells acquire highly amplified capacities to synthesize neuropeptides to overcome dilution of these signals in the general circulation. Once mature, the normal functioning of integrated physiological systems requires that neuroendocrine cells remain plastic to dramatically alter neuropeptide expression for long periods in response to hormonal and electrical cues. The mechanisms underlying the long-term regulation of neuroendocrine systems are poorly understood. Here we show that the Drosophila basic helix-loop-helix protein DIMM, a critical regulator of neuroendocrine cell differentiation, controls secretory capacity in mature neurons. DIMM expression began embryonically but persisted in adults. Through spatial and temporal manipulation of transgene expression in vivo, we defined two phases of prosecretory DIMM activity. During an embryonic critical window, DIMM controlled the differentiation of amplified expression of the neuropeptide leucokinin. At the onset of metamorphosis, levels of DIMM decreased in the insulin-producing cells (IPCs) in parallel with a marked reduction in levels of Drosophila insulin-like peptide 2 and a key neuropeptide biosynthetic enzyme peptidylglycine α-monooxygenase (PHM). Overexpression of DIMM in the IPCs prevented the decrease in PHM levels at this stage. In addition, transient overexpression of DIMM in adults produced a dramatic increase in PHM levels in numerous neurons located throughout the brain. These findings provide insights into the mechanisms controlling the maintenance of differentiated cell states, and they suggest an effective means for dynamically adjusting the strength of hormonal signals in diverse homeostatic systems.
机译:在分化期间,神经内分泌细胞获得高度扩增的能力来合成神经肽,以克服这些信号在一般循环中的稀释。一旦成熟,整合的生理系统的正常功能就要求神经内分泌细胞保持可塑性,从而在长期响应激素和电信号时显着改变神经肽的表达。对神经内分泌系统长期调节的基础机制了解甚少。在这里,我们显示了果蝇基本的螺旋-环-螺旋蛋白DIMM,它是神经内分泌细胞分化的关键调节剂,可以控制成熟神经元的分泌能力。 DIMM的表达从胚胎开始,但在成年人中持续存在。通过体内转基因表达的空间和时间操纵,我们定义了分泌型DIMM活性的两个阶段。在胚胎关键窗口期间,DIMM控制着神经肽白细胞分裂素扩增表达的分化。在变态开始时,胰岛素产生细胞(IPC)中的DIMM水平下降,同时果蝇胰岛素样肽2和关键神经肽生物合成酶肽基甘氨酸α-单加氧酶(PHM)的水平显着下降。在此阶段,IPC中DIMM的过度表达阻止了PHM级别的降低。此外,成年人中DIMM的瞬时过表达使位于大脑各处的许多神经元的PHM水平急剧增加。这些发现为控制分化细胞状态维持的机制提供了见识,并为动态调节各种稳态系统中激素信号的强度提供了一种有效手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号