首页> 美国卫生研究院文献>Biomedical Optics Express >Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain
【2h】

Analysis of hepatitis C infection using Raman spectroscopy and proximity based classification in the transformed domain

机译:使用拉曼光谱法和基于变换域的基于邻近度的分类分析丙型肝炎感染

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work presents a diagnostic system for the hepatitis C infection using Raman spectroscopy and proximity based classification. The proposed method exploits transformed Raman spectra using the proximity based machine learning technique and is denoted as RS-PCA-Prox. First, Raman spectral data is baseline corrected by subtracting noise and low intensity background. After this, a feature transformation of Raman spectra is adopted, not only to reduce the feature’s dimensionality but also to learn different deviations in Raman shifts. The proposed RS-PCA-Prox shows significant diagnostic power in terms of accuracy, sensitivity, and specificity as 95%, 0.97 and 0.94 in PCA based transformed domain. The comparison of the RS-PCA-Prox with linear and ensemble based classifiers shows that proximity based classification performs better for the discrimination of HCV infected individuals and is able to differentiate the infected individuals from normal ones on the basis of molecular spectral information. Furthermore, it is observed that characteristic spectral changes are due to variation in the intensity of lectin, chitin, lipids, ammonia and viral protein as a consequence of the HCV infection.
机译:这项工作提出了使用拉曼光谱法和基于邻近度的分类法对丙型肝炎感染的诊断系统。所提出的方法利用基于邻近的机器学习技术来利用变换的拉曼光谱,并被表示为RS-PCA-Prox。首先,通过减去噪声和低强度背景对拉曼光谱数据进行基线校正。此后,采用拉曼光谱的特征变换,不仅可以降低特征的维数,还可以了解拉曼位移的不同偏差。提出的RS-PCA-Prox在基于PCA的转换域中的准确性,敏感性和特异性方面显示出显着的诊断能力,分别为95%,0.97和0.94。 RS-PCA-Prox与基于线性和基于集合的分类器的比较表明,基于邻近度的分类方法对于HCV感染者的辨别效果更好,并且能够根据分子光谱信息将感染者与正常个体区分开。此外,观察到特征光谱变化是由于HCV感染而导致的凝集素,几丁质,脂质,氨和病毒蛋白强度的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号