首页> 美国卫生研究院文献>Biomicrofluidics >Photoresponsive microvalve for remote actuation and flow control in microfluidic devices
【2h】

Photoresponsive microvalve for remote actuation and flow control in microfluidic devices

机译:光响应微阀用于微流体设备中的远程驱动和流量控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microvalves with different actuation methods offer great integrability and flexibility in operation of lab-on-chip devices. In this work, we demonstrate a hydrogel-based and optically controlled modular microvalve that can be easily integrated within a microfluidic device and actuated by an off-chip laser source. The microvalve is based on in-channel trapping of microgel particles, which are composed of poly(N-isopropylacrylamide) and polypyrrole nanoparticles. Upon irradiation by a near-infrared (NIR) laser, the microgel undergoes volumetric change and enables precisely localized fluid on/off switching. The response rate and the “open” duration of the microvalve can be simply controlled by adjusting the laser power and exposure time. We showed that the trapped microgel can be triggered to shrink sufficiently to open a channel within as low as ∼1–2 s; while the microgel swells to re-seal the channel within ∼6–8 s. This is so far one of the fastest optically controlled and hydrogel-based microvalves, thus permitting speedy fluidic switching applications. In this study, we successfully employed this technique to control fluidic interface between laminar flow streams within a Y-junction device. The optically triggered microvalve permits flexible and remote fluidic handling, and enables pulsatile in situ chemical treatment to cell culture in an automatic and programmed manner, which is exemplified by studies of chemotherapeutic drug induced cell apoptosis under different drug treatment strategies. We find that cisplatin induced apoptosis is significantly higher in cancer cells treated with a pulsed dose, as compared to continuous flow with a sustained dose. It is expected that our NIR-controlled valving strategy will provide a simple, versatile, and powerful alternative for liquid handling in microfluidic devices.
机译:具有不同致动方法的微型阀在芯片实验室设备的操作中具有很高的集成性和灵活性。在这项工作中,我们演示了一种基于水凝胶的光控模块化微型阀,它可以轻松集成在微流控设备中并由片外激光源驱动。该微阀基于微凝胶颗粒的通道内捕获,该微凝胶颗粒由聚(N-异丙基丙烯酰胺)和聚吡咯纳米颗粒组成。在用近红外(NIR)激光照射时,微凝胶会发生体积变化,并能够进行精确的局部流体开/关切换。通过调节激光功率和曝光时间,可以简单地控制微型阀的响应率和“打开”持续时间。我们表明,被捕获的微凝胶可被触发以充分收缩以在低至1-2µs的时间内打开通道。当微凝胶膨胀以在约6-8s内重新密封通道时。迄今为止,这是最快的光学控制和基于水凝胶的微型阀之一,因此可以快速进行流体切换应用。在这项研究中,我们成功地采用了这项技术来控制Y型接头装置内层流之间的流体界面。光学触发的微阀可实现灵活和远程的流体处理,并能够以自动和程序化的方式对细胞培养物进行脉冲式原位化学处理,这是在不同药物治疗策略下研究化疗药物诱导的细胞凋亡的例证。我们发现,与持续剂量的连续流相比,在以脉冲剂量处理的癌细胞中,顺铂诱导的凋亡明显更高。预计我们的NIR控制阀策略将为微流体设备中的液体处理提供简单,通用和强大的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号