首页> 美国卫生研究院文献>Biophysical Journal >On the Origin of Microtubules’ High-Pressure Sensitivity
【2h】

On the Origin of Microtubules’ High-Pressure Sensitivity

机译:微管高压敏感性的起源

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For over 50 years, it has been known that the mitosis of eukaryotic cells is inhibited already at high hydrostatic pressure conditions of 30 MPa. This effect has been attributed to the disorganization of microtubules, the main component of the spindle apparatus. However, the structural details of the depolymerization and the origin of the pressure sensitivity have remained elusive. It has also been a puzzle how complex organisms could still successfully inhabit extreme high-pressure environments such as those encountered in the depth of oceans. We studied the pressure stability of microtubules at different structural levels and for distinct dynamic states using high-pressure Fourier-transform infrared spectroscopy and Synchrotron small-angle x-ray scattering. We show that microtubules are hardly stable under abyssal conditions, where pressures up to 100 MPa are reached. This high-pressure sensitivity can be mainly attributed to the internal voids and packing defects in the microtubules. In particular, we show that lateral and longitudinal contacts feature different pressure stabilities, and they define also the pressure stability of tubulin bundles. The intactness of both contact types is necessary for the functionality of microtubules in vivo. Despite being known to dynamically stabilize microtubules and prevent their depolymerization, we found that the anti-cancer drug taxol and the accessory protein MAP2c decrease the pressure stability of microtubule protofilaments. Moreover, we demonstrate that the cellular environment itself is a crowded place and accessory proteins can increase the pressure stability of microtubules and accelerate their otherwise highly pressure-sensitive de novo formation.
机译:50多年来,已知在30 MPa的高静水压条件下,真核细胞的有丝分裂已被抑制。这种效果归因于微管的混乱,微管是主轴设备的主要组成部分。然而,解聚的结构细节和压力敏感性的起源仍然难以捉摸。复杂的生物体如何仍然能够成功地居住在极端高压环境(例如海洋深处的环境)中也令人困惑。我们使用高压傅里叶变换红外光谱和Synchrotron小角度X射线散射研究了微管在不同结构水平和不同动态状态下的压力稳定性。我们表明,微管在深浅的条件下很难稳定,在深浅的条件下达到了100 MPa的压力。这种高压敏感性主要归因于微管中的内部空隙和填充缺陷。特别是,我们显示出横向和纵向接触具有不同的压力稳定性,并且它们还定义了微管蛋白束的压力稳定性。两种接触类型的完整性对于体内微管的功能性是必不可少的。尽管已知可以动态稳定微管并防止其解聚,但我们发现抗癌药紫杉醇和辅助蛋白MAP2c降低了微管原丝的压力稳定性。此外,我们证明细胞环境本身是一个拥挤的地方,辅助蛋白可以增加微管的压力稳定性,并加速它们的高度压敏性从头形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号