首页> 美国卫生研究院文献>Biophysical Journal >Analysis of the Strength of Interfacial Hydrogen Bonds between Tubulin Dimers Using Quantum Theory of Atoms in Molecules
【2h】

Analysis of the Strength of Interfacial Hydrogen Bonds between Tubulin Dimers Using Quantum Theory of Atoms in Molecules

机译:利用分子中的原子量子理论分析微管蛋白二聚体之间的界面氢键强度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contributions to the free energy of microtubule formation. However, the hydrogen-bond contribution was not studied before as a separate component. In this work, we use concepts such as the quantum theory of atoms in molecules to estimate the per-residue strength of hydrogen bonds contributing to the overall stability that brings subunits together in pair of tubulin heterodimers, across both the longitudinal and lateral interfaces. Our study shows that hydrogen bonding plays a major role in the stability of tubulin systems. Several residues that are crucial to the binding of vinca alkaloids are shown to be strongly involved in longitudinal microtubule stabilization. This indicates a direct relation between the binding of these agents and the effect on the interfacial hydrogen-bonding network, and explains the mechanism of their action. Lateral contacts showed much higher stability than longitudinal ones (–462 ± 70 vs. –392 ± 59 kJ/mol), which suggests a dramatic lateral stabilization effect of the GTP cap in the β-subunit. The role of the M-loop in lateral stability in absence of taxol was shown to be minor. The B-lattice lateral hydrogen bonds are shown to be comparable in strength to the A-lattice ones (−462 ± 70 vs. –472 ± 46 kJ/mol). These findings establish the importance of hydrogen bonds to the stability of tubulin systems.
机译:微管是关键的结构元件,在众多生物学功能中,它们维持细胞的细胞骨架并在细胞分裂中起主要作用,这使其成为重要的癌症化学治疗靶标。了解揭示微管蛋白二聚体(微管的组成部分)一起形成微管的能量平衡,对于揭示其动态不稳定性的机制尤其重要。已经进行了一些研究来估计对微管形成的自由能的各种贡献。但是,以前没有研究过氢键的贡献作为单独的成分。在这项工作中,我们使用诸如分子中原子的量子理论之类的概念来估计氢键的每个残基强度,这些氢键有助于整体稳定性,使整个微管蛋白异二聚体中的亚基在纵向和横向界面上都聚集在一起。我们的研究表明,氢键在微管蛋白系统的稳定性中起主要作用。对长春花生物碱的结合至关重要的几个残基显示强烈参与纵向微管稳定。这表明这些试剂的结合与对界面氢键网络的影响之间存在直接关系,并解释了其作用机理。横向接触显示出比纵向接触更高的稳定性(–462±70对–392±59 kJ / mol),这表明GTP帽在β亚基中具有显着的横向稳定作用。在没有紫杉醇的情况下,M环在侧向稳定性中的作用很小。结果表明,B晶格横向氢键的强度与A晶格横向氢键相当(-462±70 vs. –472±46kJ / mol)。这些发现确立了氢键对微管蛋白系统稳定性的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号