首页> 美国卫生研究院文献>Biophysical Journal >Lipid Bilayer Mechanics in a Pipette with Glass-Bilayer Adhesion
【2h】

Lipid Bilayer Mechanics in a Pipette with Glass-Bilayer Adhesion

机译:具有玻璃-双层粘附力的移液器中的脂质双层力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electrophysiology is a central tool for measuring how different driving forces (e.g., ligand concentration, transmembrane voltage, or lateral tension) cause a channel protein to gate. Upon formation of the high resistance seal between a lipid bilayer and a glass pipette, the so-called “giga-seal”, channel activity can be recorded electrically. In this article, we explore the implications of giga-seal formation on the mechanical state of a lipid bilayer patch. We use a mechanical model for the free energy of bilayer geometry in the presence of glass-bilayer adhesion to draw three potentially important conclusions. First, we use our adhesion model to derive an explicit relationship between applied pressure and patch shape that is consistent with the Laplace-Young Law, giving an alternative method of calculating patch tension under pressure. With knowledge of the adhesion constant, which we find to be in the range ∼0.4–4 mN/m, and the pipette size, one can precisely calculate the patch tension as a function of pressure, without the difficultly of obtaining an optical measurement of the bilayer radius of curvature. Second, we use data from previous electrophysiological experiments to show that over a wide range of lipids, the resting tension on a electrophysiological patch is highly variable and can be 10–100 times higher than estimates of the tension in a typical cell membrane. This suggests that electrophysiological experiments may be systematically altering channel-gating characteristics and querying the channels under conditions that are not the same as their physiological counterparts. Third, we show that reversible adhesion leads to a predictable change in the population response of gating channels in a bilayer patch.
机译:电生理学是用于测量不同驱动力(例如配体浓度,跨膜电压或侧向张力)如何引起通道蛋白门控的中心工具。在脂质双层和玻璃移液器之间形成高电阻密封后,即所谓的“千兆密封”,可以用电记录通道活动。在本文中,我们探讨了千兆密封的形成对脂质双层膜片机械状态的影响。我们使用机械模型对存在玻璃-双层粘附的双层几何结构的自由能得出三个潜在的重要结论。首先,我们使用粘附模型来推导施加压力与贴片形状之间的明确关系,这与拉普拉斯-杨定律相符,从而给出了一种计算压力下贴片张力的替代方法。有了粘附常数的知识,我们发现粘附常数在〜0.4–4 mN / m的范围内,并且移液管的大小可以精确地计算出膜片张力随压力的变化,而无需困难地获得双层曲率半径。其次,我们使用之前的电生理实验数据显示,在广泛的脂质范围内,电生理贴片上的静息张力变化很大,可能比典型细胞膜中张力的估计值高10-100倍。这表明电生理实验可能是系统地改变通道门控特性并在与其生理对应物不同的条件下查询通道。第三,我们表明可逆粘附导致双层贴片中门控通道的总体响应发生可预测的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号