首页> 美国卫生研究院文献>Biophysical Journal >Characterization of Photoactivated Singlet Oxygen Damage in Single-Molecule Optical Trap Experiments
【2h】

Characterization of Photoactivated Singlet Oxygen Damage in Single-Molecule Optical Trap Experiments

机译:单分子光学阱实验中光活化单线态氧损伤的表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optical traps or “tweezers” use high-power, near-infrared laser beams to manipulate and apply forces to biological systems, ranging from individual molecules to cells. Although previous studies have established that optical tweezers induce photodamage in live cells, the effects of trap irradiation have yet to be examined in vitro, at the single-molecule level. In this study, we investigate trap-induced damage in a simple system consisting of DNA molecules tethered between optically trapped polystyrene microspheres. We show that exposure to the trapping light affects the lifetime of the tethers, the efficiency with which they can be formed, and their structure. Moreover, we establish that these irreversible effects are caused by oxidative damage from singlet oxygen. This reactive state of molecular oxygen is generated locally by the optical traps in the presence of a sensitizer, which we identify as the trapped polystyrene microspheres. Trap-induced oxidative damage can be reduced greatly by working under anaerobic conditions, using additives that quench singlet oxygen, or trapping microspheres lacking the sensitizers necessary for singlet state photoexcitation. Our findings are relevant to a broad range of trap-based single-molecule experiments—the most common biological application of optical tweezers—and may guide the development of more robust experimental protocols.
机译:光学陷阱或“镊子”使用高功率,近红外激光束来操纵并向生物系统施加力,其作用范围从单个分子到细胞。尽管以前的研究已经确定,光镊会引起活细胞的光损伤,但是在单分子水平上,诱集辐射的作用尚待体外研究。在这项研究中,我们研究了一个简单的系统中由陷阱引起的破坏,该系统由拴在光学捕获的聚苯乙烯微球之间的DNA分子组成。我们表明暴露于诱捕光会影响系链的寿命,系绳的形成效率及其结构。此外,我们确定这些不可逆作用是由单线态氧的氧化损伤引起的。分子氧的这种反应态是由光阱在敏化剂的存在下局部产生的,我们将其识别为被捕获的聚苯乙烯微球。通过在厌氧条件下工作,使用淬灭单线态氧的添加剂或捕获缺乏单线态光激发所需的敏化剂的微球,可以大大减少陷阱引起的氧化损伤。我们的发现与范围广泛的基于陷阱的单分子实验(光学镊子最常见的生物学应用)有关,并可能指导更强大的实验方案的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号