首页> 美国卫生研究院文献>Biophysical Journal >Multiple Subunit Fitting into a Low-Resolution Density Map of a Macromolecular Complex Using a Gaussian Mixture Model
【2h】

Multiple Subunit Fitting into a Low-Resolution Density Map of a Macromolecular Complex Using a Gaussian Mixture Model

机译:使用高斯混合模型拟合到高分子复合物的低分辨率密度图中的多个亚基

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, electron microscopy measurement of single particles has enabled us to reconstruct a low-resolution 3D density map of large biomolecular complexes. If structures of the complex subunits can be solved by x-ray crystallography at atomic resolution, fitting these models into the 3D density map can generate an atomic resolution model of the entire large complex. The fitting of multiple subunits, however, generally requires large computational costs; therefore, development of an efficient algorithm is required. We developed a fast fitting program, “gmfit”, which employs a Gaussian mixture model (GMM) to represent approximated shapes of the 3D density map and the atomic models. A GMM is a distribution function composed by adding together several 3D Gaussian density functions. Because our model analytically provides an integral of a product of two distribution functions, it enables us to quickly calculate the fitness of the density map and the atomic models. Using the integral, two types of potential energy function are introduced: the attraction potential energy between a 3D density map and each subunit, and the repulsion potential energy between subunits. The restraint energy for symmetry is also employed to build symmetrical origomeric complexes. To find the optimal configuration of subunits, we randomly generated initial configurations of subunit models, and performed a steepest-descent method using forces and torques of the three potential energies. Comparison between an original density map and its GMM showed that the required number of Gaussian distribution functions for a given accuracy depended on both resolution and molecular size. We then performed test fitting calculations for simulated low-resolution density maps of atomic models of homodimer, trimer, and hexamer, using different search parameters. The results indicated that our method was able to rebuild atomic models of a complex even for maps of 30 Å resolution if sufficient numbers (eight or more) of Gaussian distribution functions were employed for each subunit, and the symmetric restraints were assigned for complexes with more than three subunits. As a more realistic test, we tried to build an atomic model of the GroEL/ES complex by fitting 21-subunit atomic models into the 3D density map obtained by cryoelectron microscopy using the C7 symmetric restraints. A model with low root mean-square deviations (14.7 Å) was obtained as the lowest-energy model, showing that our fitting method was reasonably accurate. Inclusion of other restraints from biological and biochemical experiments could further enhance the accuracy.
机译:最近,单个颗粒的电子显微镜测量使我们能够重建大型生物分子复合物的低分辨率3D密度图。如果可以通过X射线晶体学以原子分辨率解​​析复合物亚基的结构,则将这些模型拟合到3D密度图中可以生成整个大型复合物的原子分辨率模型。但是,多个子单元的装配通常需要大量的计算成本。因此,需要开发一种有效的算法。我们开发了一种快速拟合程序“ gmfit”,该程序使用高斯混合模型(GMM)来表示3D密度图和原子模型的近似形状。 GMM是通过将几个3D高斯密度函数相加而组成的分布函数。由于我们的模型在分析上提供了两个分布函数的乘积的整数,因此使我们能够快速计算密度图和原子模型的适合度。使用积分,引入了两种类型的势能函数:3D密度图和每个子单元之间的吸引势能,以及子单元之间的排斥势能。对称的束缚能也用于构建对称的低聚配合物。为了找到亚基的最佳构型,我们随机生成了亚基模型的初始构型,并使用三个势能的力和转矩执行了最速下降法。原始密度图及其GMM的比较表明,对于给定的精度,所需的高斯分布函数数取决于分辨率和分子大小。然后,我们使用不同的搜索参数,对同型二聚体,三聚体和六聚体的原子模型的模拟低分辨率密度图进行了测试拟合计算。结果表明,如果为每个子单元使用足够数量(八个或更多)的高斯分布函数,并且即使对称对称约束被分配给更多的复合物,我们的方法也能够为30Å分辨率的图谱重建一个复合物的原子模型。超过三个亚单位。作为更现实的测试,我们尝试通过将21个亚基原子模型拟合到使用C7对称约束的低温电子显微镜获得的3D密度图中,来构建GroEL / ES配合物的原子模型。获得了具有低均方根偏差(14.7Å)的模型作为最低能量模型,表明我们的拟合方法相当准确。从生物和生化实验中纳入其他限制条件可以进一步提高准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号